Agee JK, Skinner CN (2005) Basic principles of forest fuel reduction treatments. Forest Ecology and Management 211(1–2):83–96 https://doi.org/10.1016/j.foreco.2005.01.034
Article
Google Scholar
Becker KML, Lutz JA (2016) Can low-severity fire reverse compositional change in montane forests of the Sierra Nevada, California, USA? Ecosphere 7(12):e01484 https://doi.org/10.1002/ecs2.1484
Article
Google Scholar
Brown PM, Wienk CL, Symstad AJ (2008) Fire and forest history at Mount Rushmore. Ecological Applications 18(8):1984–1999 https://doi.org/10.1890/07-1337.1
Article
PubMed
Google Scholar
Calkin DE, Thompson MP, Finney. MA (2015) Negative consequences of positive feedbacks in US wildfire management. Forest Ecosystems 2(1):9 https://doi.org/10.1186/s40663-015-0033-8
Article
Google Scholar
Collins BM, Everett RG, Stephens SL (2011) Impacts of fire exclusion and managed fire on forest structure in an old growth sierra Nevada mixed-conifer forest. Ecosphere 2(4):51 https://doi.org/10.1890/ES11-00026.1
Article
Google Scholar
Collins BM, Fry DL, Lydersen JM, Everett R, Stephens SL (2017) Impacts of different land management histories on forest change. Ecological Applications 27(8):2475–2486 https://doi.org/10.1002/eap.1622
Article
PubMed
Google Scholar
Coop JD, Parks SA, McClernan SR, Holsinger LM (2016) Influences of prior wildfires on vegetation response to subsequent fire in a reburned Southwestern landscape. Ecological Applications 26(2):346–354 https://doi.org/10.1890/15-0775
Article
PubMed
Google Scholar
Coppoletta M, Merriam KE, Collins BM (2016) Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecological Applications 26(3):686–699 https://doi.org/10.1890/15-0225
Article
PubMed
Google Scholar
Eskelson BNI, Monleon VJ, Fried JS (2016) A 6 year longitudinal study of post-fire woody carbon dynamics in California’s forests. Canadian Journal of Forest Research 46(5):610–620 https://doi.org/10.1139/cjfr-2015-0375
Article
CAS
Google Scholar
Fry DL, Stephens SL (2010) Stand-level spatial dependence in an old-growth Jeffrey pine–mixed conifer forest, Sierra San Pedro Mártir, Mexico. Canadian Journal of Forest Research 40:1803–1814 https://doi.org/10.1139/X10-122
Article
Google Scholar
Fry DL, Stephens SL, Collins BM, North M, Franco-Vizcaíno E, Gill SJ (2014) Contrasting spatial patterns in active-fire and fire-suppressed mediterranean climate old-growth mixed conifer forests. PLoS ONE 9(2):e88985 https://doi.org/10.1371/journal.pone.0088985
Article
PubMed
PubMed Central
CAS
Google Scholar
Harris L, Taylor AH (2017) Previous burns and topography limit and reinforce fire severity in a large wildfire. Ecosphere 8(11):e02019 https://doi.org/10.1002/ecs2.2019
Article
Google Scholar
Hothorn, T., K. Hornik, C. Strobl, and A. Zeileis. 2009. PARTY: a laboratory for recursive partitioning. <http://CRAN.R-project.org/package=party>. Accessed 3 August 2016.
Google Scholar
Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. Journal of Computational and Graphical Statistics 15(3):651–674 https://doi.org/10.1198/106186006X133933
Article
Google Scholar
Huffman DW, Sánchez Meador AJ, Stoddard MT, Crouse JE, Roccaforte JP (2017) Efficacy of resource objective wildfires for restoration of ponderosa pine (Pinus ponderosa) forests in northern Arizona. Forest Ecology and Management 389(Supplement C):395–403
Article
Google Scholar
Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey.. 2004. Comprehensive database of diameter-based biomass regressions for North American tree species. USDA Forest Service General Technical Report NE-319, Northeastern Research Station, Newtown Square, Pennsylvania, USA.
Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage, International Journal of Wildland Fire. 18:116–126 https://doi.org/10.1071/WF07049
Key CH, Benson NC (2006) Landscape assessment (LA). Pages LA-1–55. In: Lutes DC, Keane RE, Caratti JF, Key CH, Benson NC, Sutherland S, Gangi LJ (eds) FIREMON: Fire effects monitoring and inventory system. USDA Forest Service General Technical Report RMRS-GTR-164-CD, Rocky Mountain Research Station, Fort Collins, Colorado, USA
Google Scholar
Knapp EE, Lydersen JM, North MP, Collins BM (2017) Efficacy of variable density thinning and prescribed fire for restoring forest heterogeneity to mixed conifer forest in the central Sierra Nevada, CA. Forest Ecology and Management 406:228–241
Article
Google Scholar
Knapp EE, Skinner CN, North MP, Estes BL (2013) Long-term overstory and understory change following logging and fire exclusion in a Sierra Nevada mixed-conifer forest. Forest Ecology and Management 310(0):903–914 https://doi.org/10.1016/j.foreco.2013.09.041
Article
Google Scholar
Larson AJ, Belote RT, Cansler CA, Parks SA, Dietz MS (2013) Latent resilience in ponderosa pine forest: effects of resumed frequent fire. Ecological Applications 23(6):1243–1249 https://doi.org/10.1890/13-0066.1
Article
PubMed
Google Scholar
Lydersen JM, Collins BM, Brooks ML, Matchett JR, Shive KL, Povak NA, Kane VR, Smith DF (2017) Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecological Applications 27(7):2013–2030 https://doi.org/10.1002/eap.1586
Article
PubMed
Google Scholar
Lydersen JM, Collins BM, Knapp EE, Roller GB, Stephens SL (2015) Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest. International Journal of Wildland Fire 24(4):484–494 https://doi.org/10.1071/WF13066
Article
Google Scholar
Lydersen JM, Collins BM, Miller JD, Fry DL, Stephens SL (2016) Relating fire-caused change in forest structure to remotely sensed estimates of fire severity. Fire Ecology 12(3):99–116 https://doi.org/10.4996/fireecology.1203099
Article
Google Scholar
Lydersen JM, North MP, Knapp EE, Collins BM (2013) Quantifying spatial patterns of tree groups and gaps in mixed-conifer forests: reference conditions and long-term changes following fire suppression and logging. Forest Ecology and Management 304:370–382
Article
Google Scholar
Mallek C, Safford H, Viers J, Miller J (2013) Modern departures in fire severity and area vary by forest type, Sierra Nevada and southern Cascades, California, USA. Ecosphere 4(12):art153 https://doi.org/10.1890/ES13-00217.1
Article
Google Scholar
Miller, J.D., E.E. Knapp, C.H. Key, C.N. Skinner, C.J. Isbell, R.M. Creasy, and J.W. Sherlock. 2009. Calibration and validation of the Relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sensing of Environment 113(3): 645–646 https://doi.org/10.1016/j.rse.2008.11.009
Miller JD, Thode AE (2007) Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment 109(1):66–80 https://doi.org/10.1016/j.rse.2006.12.006
Article
Google Scholar
North M, Collins BM, Safford HD, Stephenson NL (2016) Chapter 27: montane forests. In: Mooney H, Zavaleta E (eds) Ecosystems of California. University of California Press, Berkeley, USA, pp 553–577
Google Scholar
North M, Collins BM, Stephens SL (2012) Using fire to increase the scale, benefits and future maintenance of fuels treatments. Journal of Forestry 110(7):392–401 https://doi.org/10.5849/jof.12-021
Article
Google Scholar
North, M., P.A. Stine, K.L. O’Hara, W.J. Zielinski, and S.L. Stephens. 2009. An ecosystems management strategy for Sierra mixed-conifer forests, with addendum. USDA Forest ServiceGeneral Technical Report PSW-GTR-220, Pacific Southwest Research Station, Albany,California, USA. https://doi.org/10.2737/PSW-GTR-220
North MP, Stephens SL, Collins BM, Agee JK, Aplet GH, Franklin JF, Fulé PZ (2015) Reform forest fire management. Science 349(6254):1280–1281 https://doi.org/10.1126/science.aab2356
Article
PubMed
CAS
Google Scholar
Parks SA, Holsinger LM, Miller C, Nelson CR (2015) Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression. Ecological Applications 25(6):1478–1492 https://doi.org/10.1890/14-1430.1
Article
PubMed
Google Scholar
Parks SA, Miller C, Nelson CR, Holden ZA (2014) Previous fires moderate burn severity of subsequent wildland fires in two large western US wilderness areas. Ecosystems 17(1):29–42 https://doi.org/10.1007/s10021-013-9704-x
Article
Google Scholar
Prichard SJ, Stevens-Rumann CS, Hessburg PF (2017) Tamm review: shifting global fire regimes: lessons from reburns and research needs. Forest Ecology and Management 396(Supplement C):217–233
Article
Google Scholar
R Development Core Team. (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Scholl AE, Taylor AH (2010) Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA. Ecological Applications 20(2):362–380 https://doi.org/10.1890/08-2324.1
Article
PubMed
Google Scholar
Stephens SL, Collins BM, Biber E, Fulé PZ (2016) US federal fire and forest policy: emphasizing resilience in dry forests. Ecosphere 7(11):e01584 https://doi.org/10.1002/ecs2.1584
Article
Google Scholar
Stephenson NL (1999) Reference conditions for giant sequoia forest restoration: structure, process, and precision. Ecological Applications. 9(4):1253–1265 https://www.nps.gov/seki/learn/nature/upload/ns_reference.pdf
Stevens-Rumann C, Morgan P (2016) Repeated wildfires alter forest recovery of mixed-conifer ecosystems. Ecological Applications 26(6):1842–1853 https://doi.org/10.1890/15-1521.1
Article
PubMed
Google Scholar
Taylor, A.H., A.M. Vandervlugt, R.S. Maxwell, R.M. Beaty, C Airey. and C.N. Skinner. 2014. Changes in forest structure, fuels and potential fire behaviour since 1873 in the Lake Tahoe Basin, USA. Applied Vegetation Science 17(1): 17–31 https://doi.org/10.1111/avsc.12049
USDA Forest Service 2018. Fire Effects Information System (FEIS). US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. <https://www.feis-crs.org/feis/faces/index.xhtml>. Accessed 8 January 2018.
Westerling A, Bryant B, Preisler H, Holmes T, Hidalgo H, Das T, Shrestha S (2011) Climate change and growth scenarios for California wildfire. Climatic Change 109(S1):445–463 https://doi.org/10.1007/s10584-011-0329-9
Article
Google Scholar
Williams AP, Allen CD, Millar CI, Swetnam TW, Michaelsen J, Still CJ, Leavitt SW (2010) Forest responses to increasing aridity and warmth in the southwestern United States. Proceedings of the National Academy of Sciences of the United States of America 107(50):21289–21294 https://doi.org/10.1073/pnas.0914211107
Article
PubMed
PubMed Central
Google Scholar
Williams AP, Seager R, Abatzoglou JT, Cook BI, Smerdon JE, Cook ER (2015) Contribution of anthropogenic warming to California drought during 2012–2014. Geophysical Research Letters 42(16):6819–6828 https://doi.org/10.1002/2015GL064924
Article
Google Scholar
Zald HSJ, Gray AN, North M, Kern RA (2008) Initial tree regeneration responses to fire and thinning treatments in a Sierra Nevada mixed-conifer forest, USA. Forest Ecology and Management 256(1–2):168–179
Article
Google Scholar