Achtemeier, G.L. 2013. Field validation of a free-agent cellular automata model of fire spread with fire-atmosphere coupling. International Journal of Wildland Fire 22: 148-156 https://doi.org/10.1071/WF11055.
Google Scholar
Agee, J.K. 1993. Alternatives for implementing fire policy, Proceedings, Symposium on fire in wilderness and park management, 107-112.
Google Scholar
Anderson, H.E. 1982. Aids to determining fuel models for estimating fire behavior Grass, shrub, timber, and slash, photographic examples, danger ratings, USDA Forest Service general technical report INT - Intermountain Forest and Range Experiment Station, 122.
Google Scholar
Andrews, P.L. 2007. BehavePlus fire modeling system: past, present, and future. In Proceedings of 7th Symposium on Fire and Forest Meteorology; 23-25 October 2007, Bar Harbor, Maine, 13 p. Boston, MA: American Meteorological Society.
Google Scholar
Bachelet, D., J. Lenihan, R. Neilson, R. Drapek, and T. Kittel. 2005. Simulating the response of natural ecosystems and their fire regimes to climatic variability in Alaska. Canadian Journal of Forest Research 35: 2244-2257 https://doi.org/10.1139/x05-086.
Google Scholar
Banwell, E.M., J.M. Varner, E.E. Knapp, and R.W. Van Kirk. 2013. Spatial, seasonal, and diel forest floor moisture dynamics in Jeffrey pine-white fir forests of the Lake Tahoe Basin, USA. Forest Ecology and Management 305: 11-20 https://doi.org/10.1016/j.foreco.2013.05.005.
Google Scholar
Beukema, S.J., E.D. Reinhardt, J.A. Greenough, D.C. Robinson, and W.A. Kurz. 2003. Fire and fuels extension: model description. In Reinhardt, Elizabeth; Crookston, Nicholas L. (Technical Editors). The Fire and Fuels Extension to the Forest Vegetation Simulator. Gen. Tech. Rep. RMRS-GTR-116, 11-60., 116. Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station https://doi.org/10.2737/RMRS-GTR-116.
Google Scholar
Boer, M.M., R.J. Sadler, R.S. Wittkuhn, L. McCaw, and P.F. Grierson. 2009. Long-term impacts of prescribed burning on regional extent and incidence of wildfires-evidence from 50 years of active fire management in SW Australian forests. Forest Ecology and Management 259: 132-142 https://doi.org/10.1016/j.foreco.2009.10.005.
Google Scholar
Bragg, T.B., and L.C. Hulbert. 1976. Woody plant invasion of unburned Kansas bluestem prairie. Rangeland Ecology & Management/Journal of Range Management Archives 29: 19-24 https://doi.org/10.2307/3897682.
Google Scholar
Brown, J.K. 1974. Handbook for inventorying downed woody material, 24. Ogden, Utah: USDA Forest Service, Intermountain Research Station.
Google Scholar
Charney, J.J., and L.A. Fusina. 2006. Employing numerical weather models to enhance fire weather and fire behavior predictions. In Andrews, Patricia L.; Butler, Bret W., comps. 2006. Fuels Management-How to Measure Success: Conference Proceedings. 28-30 March 2006; Portland, OR. Proceedings RMRS-P-41, 769-785. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
Google Scholar
Chiodi, A., N. Larkin, and J.M. Varner. 2018. An analysis of Southeastern US prescribed burn weather windows: seasonal variability and El Niño associations. International Journal of Wildland Fire 27: 176-189 https://doi.org/10.1071/WF17132.
Google Scholar
Chuvieco, E., L. Giglio, and C. Justice. 2008. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Global Change Biology 14: 1488-1502 https://doi.org/10.1111/j.1365-2486.2008.01585.x.
Google Scholar
Clements, C.B., N.P. Lareau, D. Seto, J. Contezac, B. Davis, C. Teske, T.J. Zajkowski, A.T. Hudak, B.C. Bright, and M.B. Dickinson. 2016. Fire weather conditions and fire-atmosphere interactions observed during low-intensity prescribed fires-RxCADRE 2012. International Journal of Wildland Fire 25: 90-101 https://doi.org/10.1071/WF14173.
Google Scholar
Coen, J. 2013. Modeling wildland fires: A description of the Coupled Atmosphere-Wildland Fire Environment model (CAWFE).
Google Scholar
Coen, J.L., M. Cameron, J. Michalakes, E.G. Patton, P.J. Riggan, and K.M. Yedinak. 2013. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model. Journal of Applied Meteorology and Climatology 52: 16-38 https://doi.org/10.1175/JAMC-D-12-023.1.
Google Scholar
Covington, W.W., and M.M. Moore. 1994. Southwestern ponderosa forest structure: changes since Euro-American settlement. Journal of Forestry 92: 39-47.
Google Scholar
Cruz, M.G., J.S. Gould, M.E. Alexander, A.L. Sullivan, W.L. McCaw, and S. Matthews. 2015. Empirical-based models for predicting head-fire rate of spread in Australian fuel types. Australian Forestry 78: 118-158 https://doi.org/10.1080/00049158.2015.1055063.
Google Scholar
Deeming I, Lancaster I, Fosberg M, Furman R, Schroeder M. 1972. HI. The National Fire-Danger Rating System. USDA Forest Service Research Paper RM-84 February. https://doi.org/10.5962/bhl.title.98933
Google Scholar
Dell, J.E., L.A. Richards, J.J. O'Brien, E.L. Loudermilk, A.T. Hudak, S.M. Pokswinski, B.C. Bright, J.K. Hiers, B.W. Williams, and L.A. Dyer. 2017. Overstory-derived surface fuels mediate plant species diversity in frequently burned longleaf pine forests. Ecosphere 8 https://doi.org/10.1002/ecs2.1964.
Dickinson, M.B., and K.C. Ryan. 2010. Introduction: strengthening the foundation of wildland fire effects prediction for research and management. Fire Ecology 6: 1-12 https://doi.org/10.4996/fireecology.0601001.
Google Scholar
DOI-DOA U. 2014. The National Strategy: The Final Phase in the Development of the National Cohesive Wildland Fire Management Strategy, Washington, DC, April 2014.
Google Scholar
Drury, S.A., H.M. Rauscher, E.M. Banwell, S. Huang, and T.L. Lavezzo. 2016. The interagency fuels treatment decision support system: functionality for fuels treatment planning. Fire Ecology 12 (1): 103-123 https://doi.org/10.4996/fireecology.1201103.
Google Scholar
Engber, E., and J. Varner. 2012. Reversing conifer encroachment with prescribed fire: shifting mortality models toward restoration targets. Restoration Ecology 20: 665-668 https://doi.org/10.1111/j.1526-100X.2012.00900.x.
Google Scholar
Ex, S.A., J.P. Ziegler, W.T. Tinkham, and C.M. Hoffman. 2019. Long-Term Impacts of Fuel Treatment Placement with Respect to Forest Cover Type on Potential Fire Behavior across a Mountainous Landscape. Forests 10: 438 https://doi.org/10.3390/f10050438.
Google Scholar
Fernandes, P.M., and H.S. Botelho. 2003. A review of prescribed burning effectiveness in fire hazard reduction. International Journal of Wildland Fire 12: 117-128 https://doi.org/10.1071/WF02042.
Google Scholar
Finney, M.A. 1998. FARSITE: Fire Area Simulator-model development and evaluation. Res. Pap. RMRS-RP-4, Revised 2004, 4. Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 47 https://doi.org/10.2737/RMRS-RP-4.
Google Scholar
Finney, M.A. 2004. Landscape fire simulation and fuel treatment optimization. Methods for integrating modeling of landscape change: Interior Northwest Landscape Analysis System. Gen. Tech. Rep. PNW-GTR-610, 117-131. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 2004 Sep.
Google Scholar
Finney, M.A., J.D. Cohen, J.M. Forthofer, S.S. McAllister, M.J. Gollner, D.J. Gorham, K. Saito, N.K. Akafuah, B.A. Adam, and J.D. English. 2015. Role of buoyant flame dynamics in wildfire spread. Proceedings of the National Academy of Sciences 112: 9833-9838 https://doi.org/10.1073/pnas.1504498112.
CAS
Google Scholar
Fischer, W.C. 1978. Planning and evaluating prescribed fires--a standard procedure. Gen. Tech. Rep. INT-GTR-43, 19. Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station.
Google Scholar
Freeman, J.E., L.N. Kobziar, E.H. Leone, and K. Williges. 2019. Drivers of plant functional group richness and beta diversity in fire-dependent pine savannas. Diversity and Distributions https://doi.org/10.1111/ddi.12926.
Furman, J. 2018. Next Generation Fire Modeling for Advanced Wildland Fire Training. Fire Management Today 78: 48-53.
Google Scholar
Gallagher MR. 2017. Monitoring fire effects in the New Jersey Pine Barrens with burn severity indices. Rutgers University-School of Graduate Studies.
Google Scholar
Gisborne, H. 1942. Mileposts of progress in fire control and fire research. Journal of Forestry 40: 597-608.
Google Scholar
Glitzenstein, J.S., D.R. Streng, R.E. Masters, K.M. Robertson, and S.M. Hermann. 2012. Fire-frequency effects on vegetation in north Florida pinelands: Another look at the long-term Stoddard Fire Research Plots at Tall Timbers Research Station. Forest Ecology and Management 264: 197-209 https://doi.org/10.1016/j.foreco.2011.10.014.
Google Scholar
Godwin, D., L. Kobziar, and K. Robertson. 2017. Effects of fire frequency and soil temperature on soil CO2 efflux rates in old-field pine-grassland forests. Forests 8: 274 https://doi.org/10.3390/f8080274.
Google Scholar
Gomes Da Cruz, M., L. McCaw, W.R. Anderson, and J. Gould. 2013. Fire behaviour modelling in semi-arid mallee-heath shrublands of southern Australia. Environmental Modelling & Software 40: 21-34 https://doi.org/10.1016/j.envsoft.2012.07.003.
Google Scholar
Goodrick, S.L., G.L. Achtemeier, N.K. Larkin, Y. Liu, and T.M. Strand. 2013. Modelling smoke transport from wildland fires: a review. International Journal of Wildland Fire 22: 83-94 https://doi.org/10.1071/WF11116.
Google Scholar
Hawley, C.M., E.L. Loudermilk, E.M. Rowell, and S. Pokswinski. 2018. A novel approach to fuel biomass sampling for 3D fuel characterization. MethodsX 5: 1597-1604 https://doi.org/10.1016/j.mex.2018.11.006.
PubMed
PubMed Central
Google Scholar
Hiers, J.K., S.T. Jackson, R.J. Hobbs, E.S. Bernhardt, and L.E. Valentine. 2016. The Precision Problem in Conservation and Restoration. Trends in Ecology & Evolution 31: 820-830 https://doi.org/10.1016/j.tree.2016.08.001.
Google Scholar
Hiers, J.K., J.J. O'Brien, R.J. Mitchell, J.M. Grego, and E.L. Loudermilk. 2009. The wildland fuel cell concept: an approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests. International Journal of Wildland Fire 18: 315-325 https://doi.org/10.1071/WF08084.
Google Scholar
Hiers, J.K., C.L. Stauhammer, J.J. O'Brien, H.L. Gholz, T.A. Martin, J. Hom, and G. Starr. 2019. Fine dead fuel moisture shows complex lagged responses to environmental conditions in a saw palmetto (Serenoa repens) flatwoods. Agricultural and Forest Meteorology 266: 20-28 https://doi.org/10.1016/j.agrformet.2018.11.038.
Google Scholar
Hurteau, M.D., G.W. Koch, and B.A. Hungate. 2008. Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Frontiers in Ecology and the Environment 6: 493-498 https://doi.org/10.1890/070187.
Google Scholar
Hyde, J.C., A.M. Smith, R.D. Ottmar, E.C. Alvarado, and P. Morgan. 2011. The combustion of sound and rotten coarse woody debris: a review. International Journal of Wildland Fire 20: 163-174 https://doi.org/10.1071/WF09113.
Google Scholar
Hyde, J.C., K.M. Yedinak, A.F. Talhelm, A.M. Smith, D.M. Bowman, F.H. Johnston, P. Lahm, M. Fitch, and W.T. Tinkham. 2017. Air quality policy and fire management responses addressing smoke from wildland fires in the United States and Australia. International Journal of Wildland Fire 26: 347-363 https://doi.org/10.1071/WF16154.
Google Scholar
Johnson, E., and K. Miyanishi. 2001. Strengthening fire ecology’s roots. In Forest Fires: Behavior and Ecological Effects, ed. E. Johnson and K. Miyanishi, 1-9. San Diego, CA: Forest Fires: Behavior and Ecological Effects https://doi.org/10.1016/B978-012386660-8/50003-9.
Google Scholar
Jolly, W., and D. Johnson. 2018. Pyro-ecophysiology: shifting the paradigm of live wildland fuel research. Fire 1: 8 https://doi.org/10.3390/fire1010008.
Google Scholar
Jolly, W.M., A.M. Hadlow, and K. Huguet. 2014. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content. International Journal of Wildland Fire 23: 480-489 https://doi.org/10.1071/WF13127.
Google Scholar
Jones, G.M., R. Gutiérrez, D.J. Tempel, S.A. Whitmore, W.J. Berigan, and M.Z. Peery. 2016. Megafires: an emerging threat to old-forest species. Frontiers in Ecology and the Environment 14: 300-306 https://doi.org/10.1002/fee.1298.
Google Scholar
Kaufmann, M.R., and A. Shlisky. 2005. Good fire, bad fire: how to think about forest land management and ecological processes, 16. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
Google Scholar
Kiefer, M., S. Zhong, W. Heilman, J. Charney, and X. Bian. 2013. Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts. Journal of Geophysical Research: Atmospheres 118: 6175-6188 https://doi.org/10.1002/jgrd.50491.
Google Scholar
Kiefer, M.T., W.E. Heilman, S. Zhong, J.J. Charney, and X. Bian. 2015. Mean and turbulent flow downstream of a low-intensity fire: Influence of canopy and background atmospheric conditions. Journal of Applied Meteorology and Climatology 54: 42-57 https://doi.org/10.1175/JAMC-D-14-0058.1.
Google Scholar
Kolden, C.A. 2019. We're Not Doing Enough Prescribed Fire in the Western United States to Mitigate Wildfire Risk. Fire 2: 30 https://doi.org/10.3390/fire2020030.
Google Scholar
Kreye, J.K., J.K. Hiers, J.M. Varner, B. Hornsby, S. Drukker, and J.J. O'Brien. 2018. Effects of solar heating on the moisture dynamics of forest floor litter in humid environments: composition, structure, and position matter. Canadian Journal of Forest Research 48: 1331-1342 https://doi.org/10.1139/cjfr-2018-0147.
Google Scholar
Linn, R., J. Canfield, P. Cunningham, C. Edminster, J.-L. Dupuy, and F. Pimont. 2012. Using periodic line fires to gain a new perspective on multi-dimensional aspects of forward fire spread. Agricultural and Forest Meteorology 157: 60-76 https://doi.org/10.1016/j.agrformet.2012.01.014.
Google Scholar
Linn, R., J. Reisner, J.J. Colman, and J. Winterkamp. 2002. Studying wildfire behavior using FIRETEC. International Journal of Wildland Fire 11: 233-246 https://doi.org/10.1071/WF02007.
Google Scholar
Linn, R.R., S. L., Goodrick, S. Brambilla, M.J. Brown, R.S. Middleton, J.J. O'Brien, and J.K. Hiers. 2020. QUIC-fire: A fast-running simulation tool for prescribed fire planning. Environmental Modelling & Software, 125, 104616.
Linn, R.R., C.H. Sieg, C.M. Hoffman, J.L. Winterkamp, and J.D. McMillin. 2013. Modeling wind fields and fire propagation following bark beetle outbreaks in spatially-heterogeneous pinyon-juniper woodland fuel complexes. Agricultural and Forest Meteorology 173: 139-153 https://doi.org/10.1016/j.agrformet.2012.11.007.
Google Scholar
Littell, J.S., D.L. Peterson, K.L. Riley, Y. Liu, and C.H. Luce. 2016. A review of the relationships between drought and forest fire in the United States. Global Change Biology 22: 2353-2369 https://doi.org/10.1111/gcb.13275.
PubMed
Google Scholar
Liu, Y., S. Goodrick, and G. Achtemeier. 2018. The weather conditions for desired smoke plumes at a FASMEE burn site. Atmosphere 9 (7): 259 https://doi.org/10.3390/atmos9070259.
Google Scholar
Liu, Y., A. Kochanski, K. Baker, W. Mell, R. Linn, R. Paugam, J. Mandel, A. Fournier, M.A. Jenkins, and S. Goodrick. 2019. Fire behavior and smoke modeling: Model improvement and measurement needs for next-generation operational smoke prediction systems. International Journal of Wildland Fire https://doi.org/10.1071/WF18204.
Loudermilk, E.L., J.K. Hiers, and J.J. O'Brien. 2018. The role of fuels for understanding fire behavior and fire effects. In Ecological restoration and management of longleaf pine forests., ed. L. Katherine Kirkman and Steven B. Jack, 107-122. CRC Press, Taylor & Francis Group (pp. 107-122). Boca Raton (Florida).
Loudermilk, E.L., J.K. Hiers, J.J. O'Brien, R.J. Mitchell, A. Singhania, J.C. Fernandez, W.P. Cropper, and K.C. Slatton. 2009. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics. International Journal of Wildland Fire 18: 676-685 https://doi.org/10.1071/WF07138.
Google Scholar
Lydersen, J.M., M.P. North, and B.M. Collins. 2014. Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes. Forest Ecology and Management 328: 326-334 https://doi.org/10.1016/j.foreco.2014.06.005.
Google Scholar
Maxwell, W.G., and F.R. Ward. 1980. Photo series for quantifying natural forest residues in common vegetation types of the Pacific Northwest. Gen. Tech. Rep. PNW-GTR-105. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station 105 https://doi.org/10.2737/PNW-GTR-105.
Google Scholar
McCaw, W.L. 2013. Managing forest fuels using prescribed fire-a perspective from southern Australia. Forest Ecology and Management 294: 217-224 https://doi.org/10.1016/j.foreco.2012.09.012.
Google Scholar
McCullers, S. 2013. A dangerous servant and a fearful master: why Florida’s prescribed fire statute should be amended. Florida Law Review 65: 587.
Google Scholar
Meddens, A.J., C.A. Kolden, J.A. Lutz, A.M. Smith, C.A. Cansler, J.T. Abatzoglou, G.W. Meigs, W.M. Downing, and M.A. Krawchuk. 2018. Fire Refugia: What Are They, and Why Do They Matter for Global Change? BioScience 68: 944-954 https://doi.org/10.1093/biosci/biy103.
Google Scholar
Mell, W., J. Charney, M.A. Jenkins, P. Cheney, and J. Gould. 2013. Numerical simulations of grassland fire behavior from the LANL-FIRETEC and NIST-WFDS models. In Remote Sensing and Modeling Applications to Wildland Fires Sensing and Modeling Applications to Wildland Fires (pp. 209-225). Springer, Berlin, Heidelberg.
Melvin M. 2018. 2018 National prescribed fire use survey report. Technical Report 03-18 Coalition of Prescribed Fire Councils, Inc.
Google Scholar
Miesel, J., A. Reiner, C. Ewell, B. Maestrini, and M. Dickinson. 2018. Quantifying changes in total and pyrogenic carbon stocks across fire severity gradients using active wildfire incidents. Frontiers in Earth Science 6: 41 https://doi.org/10.3389/feart.2018.00041.
Google Scholar
Mitchell, R.J., J.K. Hiers, J. O'Brien, and G. Starr. 2009. Ecological Forestry in the Southeast: Understanding the Ecology of Fuels. Journal of Forestry 107: 391-397.
Google Scholar
Molina-Terrén, D., A. Cardil, and L. Kobziar. 2016. Practitioner perceptions of wildland fire management across South Europe and Latin America. Forests 7: 184 https://doi.org/10.3390/f7090184.
Google Scholar
Nelson, R.M., Jr. 2001. Water relations of forest fuels. In Forest fires (79-149). Academic Press, Cambridge.
O'Brien, J., J. Hiers, J. Varner, C. Hoffman, M. Dickinson, S. Michaletz, E. Loudermilk, and B. Butler. 2018. Advances in mechanistic approaches to quantifying biophysical fire effects. Current Forestry Reports 4: 161-177 https://doi.org/10.1007/s40725-018-0082-7.
Google Scholar
O'Brien, J.J., E.L. Loudermilk, J.K. Hiers, B. Hornsby, S. Pokswinski, A.T. Hudak, D. Strother, E. Rowell, and B. Bright. 2016. Canopy derived fuels drive patterns of in-fire energy release and understory plant mortality in a longleaf pine (Pinus palustris) sandhill in Northwest FL, USA. Canadian Journal of Remote Sensing 42: 489-500 https://doi.org/10.1080/07038992.2016.1199271.
Google Scholar
Ottmar, R. D., Hiers, J. K., Butler, B. W., Clements, C. B., Dickinson, M. B., Hudak, A. T., O’Brien, J. J., Potter, B. E., Rowell, E. M., Strand, T. M., and Zajkowski, T. J. 2016. Measurements, datasets and preliminary results from the RxCADRE project–2008, 2011 and 2012. International Journal of Wildland Fire 25(1): 1–9.
Parsons, R.A., R.R. Linn, F. Pimont, C. Hoffman, J. Sauer, J. Winterkamp, C.H. Sieg, and W.M. Jolly. 2017. Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior. Land 6: 43 https://doi.org/10.3390/land6020043.
Google Scholar
Parsons, R.A., W.E. Mell, and P. McCauley. 2011. Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior. Ecological Modelling 222: 679-691 https://doi.org/10.1016/j.ecolmodel.2010.10.023.
Google Scholar
Pimont, F., J.-L. Dupuy, R.R. Linn, and S. Dupont. 2009. Validation of FIRETEC wind-flows over a canopy and a fuel-break. International Journal of Wildland Fire 18: 775-790 https://doi.org/10.1071/WF07130.
Google Scholar
Pingree, M.R., and L.N. Kobziar. 2019. The myth of the biological threshold: A review of biological responses to soil heating associated with wildland fire. Forest Ecology and Management 432: 1022-1029 https://doi.org/10.1016/j.foreco.2018.10.032.
Google Scholar
Potter, B.E. 2012a. Atmospheric interactions with wildland fire behaviour-I. Basic surface interactions, vertical profiles and synoptic structures. International Journal of Wildland Fire 21: 779-801 https://doi.org/10.1071/WF11128.
Google Scholar
Potter, B.E. 2012b. Atmospheric interactions with wildland fire behaviour-II. Plume and vortex dynamics. International Journal of Wildland Fire 21: 802-817 https://doi.org/10.1071/WF11129.
Google Scholar
Reeves, M.C., K.C. Ryan, M.G. Rollins, and T.G. Thompson. 2009. Spatial fuel data products of the LANDFIRE project. International Journal of Wildland Fire 18: 250-267 https://doi.org/10.1071/WF08086.
Google Scholar
Reid, A.M., K.M. Robertson, and T.L. Hmielowski. 2012. Predicting litter and live herb fuel consumption during prescribed fires in native and old-field upland pine communities of the southeastern United States. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 42: 1611-1622 https://doi.org/10.1139/x2012-096.
Google Scholar
Reinhardt, E. D. (1997). First order fire effects model: FOFEM 4.0, user’s guide (No. 344-345). Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture. https://doi.org/10.2737/INT-GTR-344
Google Scholar
Reinhardt, E.D., and M.B. Dickinson. 2010. First-order fire effects models for land management: overview and issues. Fire Ecology 6: 131 https://doi.org/10.4996/fireecology.0601131.
Google Scholar
Robertson, K.M., Y.P. Hsieh, and G.C. Bugna. 2014. Fire environment effects on particulate matter emission factors in southeastern US pine-grasslands. Atmospheric Environment 99: 104-111 https://doi.org/10.1016/j.atmosenv.2014.09.058.
CAS
Google Scholar
Rollins, M.G. 2009. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. International Journal of Wildland Fire 18: 235-249 https://doi.org/10.1071/WF08088.
Google Scholar
Rothermel, R.C. 1972. A mathematical model for predicting fire spread in wildland fuels, US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. General Technical Report no. INT-115, 40.
Google Scholar
Rothermel RC. 1983. How to predict the spread and intensity of forest and range fires. The Bark Beetles, Fuels, and Fire Bibliography. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. General Technical Report no. INT-143. https://doi.org/10.2737/INT-GTR-143
Google Scholar
Rowell, E., E.L. Loudermilk, C. Seielstad, and J.J. O'Brien. 2016. Using simulated 3D surface fuelbeds and terrestrial laser scan data to develop inputs to fire behavior models. Canadian Journal of Remote Sensing 42: 443-459 https://doi.org/10.1080/07038992.2016.1220827.
Google Scholar
Ryan, K.C., E.E. Knapp, and J.M. Varner. 2013. Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Frontiers in Ecology and the Environment 11: e15-e24 https://doi.org/10.1890/120329.
Google Scholar
Sandberg, D.V., R.D. Ottmar, and G.H. Cushon. 2001. Characterizing fuels in the 21st century. International Journal of Wildland Fire 10: 381-387 https://doi.org/10.1071/WF01036.
Google Scholar
Schroeder, M.J., and C.C. Buck. 1970. Fire weather: a guide for application of meteorological information to forest fire control operations, The Bark Beetles, Fuels, and Fire Bibliography, 14.
Google Scholar
Scott, A.C., D.M. Bowman, W.J. Bond, S.J. Pyne, and M.E. Alexander. 2013. Fire on earth: an introduction: John Wiley & Sons.
Google Scholar
Skowronski, N.S., K.L. Clark, M. Duveneck, and J. Hom. 2011. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sensing of Environment 115: 703-714 https://doi.org/10.1016/j.rse.2010.10.012.
Google Scholar
Smith, A.M., A.F. Talhelm, D.M. Johnson, A.M. Sparks, C.A. Kolden, K.M. Yedinak, K.G. Apostol, W.T. Tinkham, J.T. Abatzoglou, and J.A. Lutz. 2017. Effects of fire radiative energy density dose on Pinus contorta and Larix occidentalis seedling physiology and mortality. International Journal of Wildland Fire 26: 82-94 https://doi.org/10.1071/WF16077.
Google Scholar
Stephens, S.L., N. Burrows, A. Buyantuyev, R.W. Gray, R.E. Keane, R. Kubian, S. Liu, F. Seijo, L. Shu, and K.G. Tolhurst. 2014. Temperate and boreal forest mega-fires: characteristics and challenges. Frontiers in Ecology and the Environment 12: 115-122 https://doi.org/10.1890/120332.
Google Scholar
Stephens, S.L., and L.W. Ruth. 2005. Federal forest-fire policy in the United States. Ecological Applications 15: 532-542 https://doi.org/10.1890/04-0545.
Google Scholar
Stocks, B. J., Alexander, M. E., and Lanoville, R. A. 2004. Overview of the international crown fire modelling experiment (ICFME). Canadian Journal of Forest Research, 34(8), 1543–1547.
Google Scholar
Sullivan, A.L. 2009a. Wildland surface fire spread modelling, 1990-2007. 1: Physical and quasi-physical models. International Journal of Wildland Fire 18: 349-368 https://doi.org/10.1071/WF06143.
Google Scholar
Sullivan, A.L. 2009b. Wildland surface fire spread modelling, 1990-2007. 2: Empirical and quasi-empirical models. International Journal of Wildland Fire 18: 369-386 https://doi.org/10.1071/WF06142.
Google Scholar
Tanskanen, H., A. Granström, A. Venäläinen, and P. Puttonen. 2006. Moisture dynamics of moss-dominated surface fuel in relation to the structure of Picea abies and Pinus sylvestris stands. Forest Ecology and Management 226: 189-198 https://doi.org/10.1016/j.foreco.2006.01.048.
Google Scholar
Varner, J.M., J.K. Hiers, R.D. Ottmar, D.R. Gordon, F.E. Putz, and D.D. Wade. 2007. Overstory tree mortality resulting from reintroducing fire to long-unburned longleaf pine forests: The importance of duff moisture. Canadian Journal of Forest Research 37: 1349-1358 https://doi.org/10.1139/X06-315.
Google Scholar
Wade, D.D., J.D. Lunsford, M.J. Dixon, and H.E. Mobley. 1989. A Guide for Prescribed Fire in Southern Forests, 56. Atlanta, GA: US Department of Agriculture, Forest Service.
Google Scholar
Waldrop, T.A., and S.L. Goodrick. 2012. Introduction to prescribed fires in Southern ecosystems. Science Update SRS-054. Asheville, NC: US Department of Agriculture, Forest Service, Southern Research Station. General Technical Report 54: 1-80.
Google Scholar
Walters, J.R., S.J. Daniels, J.H. Carter III, and P.D. Doerr. 2002. Defining quality of red-cockaded woodpecker foraging habitat based on habitat use and fitness. The Journal of Wildlife Management: 1064-1082 https://doi.org/10.2307/3802938.
Whelan, R.J. 1995. The Ecology of Fire, 346. Cambridge, UK: Cambridge University Press.
Google Scholar
Wiesner, S., C.L. Staudhammer, C.L. Javaheri, J.K. Hiers, L.R. Boring, R.J. Mitchell, and G. Starr. 2019. The role of understory phenology and productivity in the carbon dynamics of longleaf pine savannas. Ecosphere 10: e02675 https://doi.org/10.1002/ecs2.2675.
Google Scholar
Williams, B.W., E.B. Moser, J.K. Hiers, K. Gault, and D.K. Thurber. 2006. Protecting red-cockaded woodpecker cavity trees predisposed to fire-induced mortality. The Journal of Wildlife Management 70: 702-707 https://doi.org/10.2193/0022-541X(2006)70[702:PRWCTP]2.0.CO;2.
Google Scholar
Yedinak, K., E. Strand, J. Hiers, and J. Varner. 2018. Embracing complexity to advance the science of wildland fire behavior. Fire 1: 20 https://doi.org/10.3390/fire1020020.
Google Scholar
Yoder, J. 2008. Liability, regulation, and endogenous risk: the incidence and severity of escaped prescribed fires in the United States. The Journal of Law and Economics 51: 297-325 https://doi.org/10.1086/589661.
Google Scholar
Zhou, X., S. Mahalingam, and D. Weise. 2005. Modeling of marginal burning state of fire spread in live chaparral shrub fuel bed. Combustion and Flame 143: 183-198 https://doi.org/10.1016/j.combustflame.2005.05.013.
CAS
Google Scholar