Albanesi, S., S. Dardanelli, and L.M. Bellis. 2014. Effects of fire disturbance on bird communities and species of mountain Serrano forest in central Argentina. Journal of Forest Research 19: 105–114. https://doi.org/10.1007/s10310-012-0388-4.
Article
Google Scholar
Andela, N., D.C. Morton, L. Giglio, Y. Chen, G.R. van der Werf, P.S. Kasibhatla, R.S. DeFries, G.J. Collatz, S. Hantson, S. Kloster, D. Bachelet, M. Forrest, G. Lasslop, F. Li, S. Mangeon, J.R. Melton, C. Yue, and J.T. Randerson. 2017. A human-driven decline in global burned area. Science 356 (6345): 1356–1362. https://doi.org/10.1126/science.aal4108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Araújo, G.M., A.F. Amaral, E.M. Bruna, et al. 2013. Fire drives the reproductive responses of herbaceous plants in a Neotropical swamp. Plant Ecology 214: 1479–1484. https://doi.org/10.1007/s11258-013-0268-9.
Article
Google Scholar
Arcamone, J.R., and P. Jaureguiberry. 2018. Germination response of common annual and perennial forbs to heat shock and smoke treatments in the Chaco Serrano, central Argentina. Austral Ecology 43: 567–577. https://doi.org/10.1111/aec.12593.
Article
Google Scholar
Archibald, S., C.E.R. Lehmann, C.M. Belcher, W.J. Bond, R.A. Bradstock, A.-L. Daniau, K.G. Dexter, E.J. Forrestel, M. Greve, and T. He. 2018. Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters 13: 33003. https://doi.org/10.1088/1748-9326/aa9ead.
Article
Google Scholar
Archibald, S., C.E.R. Lehmann, J.L. Gómez-Dans, and R.A. Bradstock. 2013. Defining pyromes and global syndromes of fire regimes. Proceedings National Academy of Science 110 (16): 6442–6447. https://doi.org/10.1073/pnas.1211466110.
Article
Google Scholar
Archibald, S., D.P. Roy, B.W. van Wilgen, and R.J. Scholes. 2009. What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology 15: 613–630. https://doi.org/10.1111/j.1365-2486.2008.01754.x.
Article
Google Scholar
Balch, J.K., P.M. Brando, D.C. Nepstad, M.T. Coe, D. Silvério, T.J. Massad, E.A. Davidson, P. Lefebvre, C. Oliveira-Santos, W. Rocha, R.T.S. Cury, A. Parsons, and K.S. Carvalho. 2015. The susceptibility of southeastern Amazon forests to fire: insights from a large-scale burn experiment. Bioscience 65: 893–905. https://doi.org/10.1093/biosci/biv106.
Article
Google Scholar
Barlow, J., and C.A. Peres. 2004. Avifaunal responses to single and recurrent wildfires in Amazonian forests. Ecological Applications 14 (5): 1358–1373. https://doi.org/10.1890/03-5077.
Article
Google Scholar
Barlow, J., and C.A. Peres. 2008. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society of London B: Biological Sciences 363: 1787–1794. https://doi.org/10.1098/rstb.2007.0013.
Article
PubMed
PubMed Central
Google Scholar
Barlow, J., C.A. Peres, B.O. Lagan, and T. Haugaasen. 2003. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters 6: 6–8. https://doi.org/10.1046/j.1461-0248.2003.00394.x.
Article
Google Scholar
Baruch, Z., and B. Bilbao. 1999. Effects of fire and defoliation on the life history of native and invader C4 grasses in a Neotropical savanna. Oecologia 119 (4): 510–520. https://doi.org/10.1007/s004420050814.
Article
PubMed
Google Scholar
Bates, J.D., R.N. Sharp, and K.W. Davies. 2014. Sagebrush steppe recovery after fire varies by development phase of Juniperus occidentalis woodland. International Journal of Wildland Fire 23: 117–130. https://doi.org/10.1071/WF12206.
Article
Google Scholar
Bauer, S., and B.J. Hoye. 2014. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344 (6179): 1242552. https://doi.org/10.1126/science.1242552.
Article
CAS
PubMed
Google Scholar
Blackhall, M., E. Raffaele, J. Paritsis, F. Tiribelli, J.M. Morales, T. Kitzberger, J.H. Gowda, and T.T. Veblen. 2017. Effects of biological legacies and herbivory on fuels and flammability traits: a long-term experimental study of alternative stable states. Journal of Ecology 105: 1309–1322. https://doi.org/10.1111/1365-2745.12796.
Article
Google Scholar
Blackhall, M., E. Raffaele, and T.T. Veblen. 2015. Combined effects of fire and cattle in shrublands and forests of northwest Patagonia. Ecología Austral 25: 1–10. https://doi.org/10.25260/EA.15.25.1.0.48.
Article
Google Scholar
Bond, M.L., R.B. Siegel, and D.L. Craig, eds. 2012. A conservation strategy for the black-backed woodpecker (Picoides arcticus) in California – Version 1.0. Point Reyes Station: The Institute for Bird Populations and California Partners in Flight.
Google Scholar
Bond, W.J. 2005. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. Journal of Vegetation Science 16 (3): 261–266.
Google Scholar
Bond, W. J., & B. W. Van Wilgen. 2012. Fire and plants (Vol. 14). Springer Science & Business Media.
Bond, W.J., and J.E. Keeley. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecological Evolution 20: 387–394. https://doi.org/10.1016/j.tree.2005.04.025.
Article
Google Scholar
Bond, W.J., G.F. Midgley, and F.I. Woodward. 2003. What controls South African vegetation – climate or fire? South African Journal of Botany 69: 1–13. https://doi.org/10.1016/S0254-6299(15)30362-8.
Article
Google Scholar
Bond, W.J., F.I. Woodward, and G.F. Midgley. 2005. The global distribution of ecosystems in a world without fire. New Phytology 165: 525–537. https://doi.org/10.1111/j.1469-8137.2004.01252.x.
Article
CAS
Google Scholar
Borenstein, M., H. Cooper, L. Hedges, and J. Valentine. 2009. Effect sizes for continuous data. In The handbook of research syntheses and meta-analysis, ed. H. Cooper, L.V. Hedges, and J.C. Valentine, 2nd ed., 221–236. New York: Russell Sage Foundation.
Google Scholar
Borenstein, M., L.V. Hedges, J.P.T. Higgins, and H.R. Rothstein. 2010. A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods 1 (2): 97–111. https://doi.org/10.1002/jrsm.12.
Article
PubMed
Google Scholar
Bowman, D.M.J.S., J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson, M.A. Cochrane, C.M. D’Antonio, R.S. Defries, J.C. Doyle, S.P. Harrison, F.H. Johnston, J.E. Keeley, M.A. Krawchuk, C.A. Kull, J.B. Marston, M.A. Moritz, I.C. Prentice, C.I. Roos, A.C. Scott, T.W. Swetnam, G.R. van der Werf, and S.J. Pyne. 2009. Fire in the Earth system. Science 324 (5926): 481–484. https://doi.org/10.1126/science.1163886.
Article
CAS
PubMed
Google Scholar
Boyer, W.D., and J.H. Miller. 1994. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands. Forest Ecology and Management 70 (1-3): 311–318. https://doi.org/10.1016/0378-1127(94)90096-5.
Article
Google Scholar
Bradstock, R.A. 2010. A biogeographic model of fire regimes in Australia: current and future implications. Global Ecology and Biogeography 19: 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.x.
Article
Google Scholar
Bravo, S., C. Kunst, M. Leiva, and R. Ledesma. 2014. Response of hardwood tree regeneration to surface fires, western Chaco region, Argentina. Forest Ecology and Management 326: 36–45. https://doi.org/10.1016/j.foreco.2014.04.009.
Article
Google Scholar
Brooks, M., C. D’Antonio, D.M. Richardson, J.B. Grace, J.E. Keeley, J.M. DiTomaso, R.J. Hobbs, M. Pellant, and D. Pyke. 2004. Effects of invasive alien plants on fire regimes. Bioscience 54 (7): 677–688. https://doi.org/10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2.
Article
Google Scholar
Bruno, J.F., and B.J. Cardinale. 2008. Cascading effects of predator richness. Frontiers in Ecology and the Environment 6: 539–546. https://doi.org/10.1890/070136.
Article
Google Scholar
Carbone, L.M., and R. Aguilar. 2017. Fire frequency effects on soil and pollinators: what shapes sexual plant reproduction? Plant Ecology 218: 1283–1297. https://doi.org/10.1007/s11258-017-0768-0.
Article
Google Scholar
Carbone, L.M., J. Tavella, J.G. Pausas, and R. Aguilar. 2019. A global synthesis of fire effects on pollinators. Global Ecology and Biogeography 28 (10): 1487–1498. https://doi.org/10.1111/geb.12939.
Article
Google Scholar
Casady, G.M., and S.E. Marsh. 2010. Broad-scale environmental conditions responsible for post-fire vegetation dynamics. Remote Sensing 2 (12): 2643–2664. https://doi.org/10.3390/rs2122643.
Article
Google Scholar
Casillo, J., C. Kunst, and M. Semmartin. 2012. Effects of fire and water availability on the emergence and recruitment of grasses, forbs and woody species in a semiarid Chaco savanna. Austral Ecology 37: 452–459. https://doi.org/10.1111/j.1442-9993.2011.02306.x.
Article
Google Scholar
Cavallero, L., D.R. López, E. Raffaele, and M.A. Aizen. 2015. Structural-functional approach to identify post-disturbance recovery indicators in forests from northwestern Patagonia: a tool to prevent state transitions. Ecological Indicators 52: 85–95. https://doi.org/10.1016/j.ecolind.2014.11.019.
Article
Google Scholar
Cavallero, L., E. Raffaele, and M.A. Aizen. 2013. Birds as mediators of passive restoration during early post-fire recovery. Biological Conservation 158: 342–350. https://doi.org/10.1016/j.biocon.2012.10.004.
Article
Google Scholar
Certini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143 (1): 1–10. https://doi.org/10.1007/s00442-004-1788-8.
Article
PubMed
Google Scholar
Chaneton, E.J., C.N. Mazía, M. Machera, A. Uchitel, and C.M. Ghersa. 2004. Establishment of honey locust (Gleditsia triacanthos) in burned Pampean grasslands. Weed Technology 18: 1325–1329. https://doi.org/10.1614/0890-037X(2004)018[1325:EOHLGT]2.0.CO;2.
Article
Google Scholar
Chapin III, F.S., P.A. Matson, and P.M. Vitousek. 2011. Principles of terrestrial ecosystem ecology. New York: Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-9504-9.
Cochrane, M.A. 2003. Fire science for rainforests. Nature 421: 913–919. https://doi.org/10.1038/nature01437.
Article
CAS
PubMed
Google Scholar
Cohn, J.S., J. Di Stefano, F. Christie, G. Cheers, and A. York. 2015. How do heterogeneity in vegetation types and post-fire age-classes contribute to plant diversity at the landscape scale? Forest Ecology and Management 346: 22–30. https://doi.org/10.1016/j.foreco.2015.02.023.
Article
Google Scholar
Coop, J.D., R.T. Massatti, and A.W. Schoettle. 2010. Subalpine vegetation pattern three decades after stand-replacing fire: effects of landscape context and topography on plant community composition, tree regeneration, and diversity. Journal of Vegetation Science 21 (3): 472–487. https://doi.org/10.1111/j.1654-1103.2009.01154.x.
Article
Google Scholar
Coop, J.D., S.A. Parks, C.S. Stevens-Rumann, S.D. Crausbay, P.E. Higuera, M.D. Hurteau, A. Tepley, E. Whitman, T. Assal, B.M. Collins, K.T. Davis, S. Dobrowski, D.A. Falk, P.J. Fornwalt, P.Z. Fulé, B.J. Harvey, V.R. Kane, C.E. Littlefield, E.Q. Margolis, M. North, M.-A. Parisien, S. Prichard, and K.C. Rodman. 2020. Wildfire-driven forest conversion in Western North American landscapes. Bioscience 70 (8): 659–673. https://doi.org/10.1093/biosci/biaa061.
Article
PubMed
PubMed Central
Google Scholar
Defossé, G.E., M.M. Godoy, L.O. Bianchi, N.S. Lederer, and C. Kunst. 2015. Fire history, fire ecology and management in Argentine Patagonia: from ancient times to nowadays. In Current international perspectives on wildland fires, mankind and the environment, ed. P. Leblon, 177–210. New York: Nova Science Publishers.
Google Scholar
Di Bella, C.M., E.G. Jobbágy, J.M. Paruelo, and S. Pinnock. 2006. Continental fire density patterns in South America. Global Ecology & Biogeography 15 (2): 192–199. https://doi.org/10.1111/j.1466-822X.2006.00225.x.
Article
Google Scholar
Dirzo, R., H.S. Young, M. Galetti, G. Ceballos, N.J.B. Isaac, and B. Collen. 2014. Defaunation in the Anthropocene. Science 345 (6195): 401–406. https://doi.org/10.1126/science.1251817.
Article
CAS
PubMed
Google Scholar
Doherty, T.S., E.J.B. van Etten, R.A. Davis, C. Knuckey, J.Q. Radford, and S.A. Dalgleish. 2017. Ecosystem Responses to Fire: Identifying Cross-taxa Contrasts and Complementarities to Inform Management Strategies. Ecosystems 20: 872–884. https://doi.org/10.1007/s10021-016-0082-z.
Article
Google Scholar
Durigan, G., N.A.L. Pilon, R.C.R. Abreu, W.A. Hoffmann, M. Martins, B.F. Fiorillo, A.Z. Antunes, A.P. Carmignotto, J.B. Maravalhas, J. Vieira, and H.L. Vasconcelos. 2020. No net loss of species diversity after prescribed fires in the Brazilian savanna. Frontiers in Forests and Global Change 19 February 2020. https://doi.org/10.3389/ffgc.2020.00013.
Dwyer, E., S. Pinnock, J.M. Grégoire, and J.M.C. Pereira. 2000. Global spatial and temporal distribution of vegetation fire as determined from satellite observations. International Journal of Remote Sensing 21: 1289–1302. https://doi.org/10.1080/014311600210182.
Article
Google Scholar
Farnsworth, L.M., D.G. Nimmo, L.T. Kelly, A.F. Bennett, and M.F. Clarke. 2014. Does pyrodiversity beget alpha, beta or gamma diversity? A case study using reptiles from semi-arid Australia. Diversity and Distributions 20 (6): 663–673. https://doi.org/10.1111/ddi.12181.
Article
Google Scholar
Fontaine, J.B., and P.L. Kennedy. 2012. Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in US fire-prone forests. Ecological Applications 2 (5): 1547–1561. https://doi.org/10.1890/12-0009.1.
Article
Google Scholar
Galíndez, G., F. Biganzoli, P. Ortega-Baes, and A.L. Scopel. 2009. Fire responses of three co-occurring Asteraceae shrubs in a temperate savanna in South America. Plant Ecology 202 (1): 149–158. https://doi.org/10.1007/s11258-008-9537-4.
Article
Google Scholar
García, Y., M.C. Castellanos, and J.G. Pausas. 2016. Fires can benefit plants by disrupting antagonistic interactions. Oecologia 182: 1165–1173. https://doi.org/10.1007/s00442-016-3733-z.
Article
PubMed
Google Scholar
Geary, W.L., D.G. Nimmo, T.S. Doherty, E.G. Ritchie, and A.I.T. Tulloch. 2019. Threat webs: Reframing the co-occurrence and interactions of threats to biodiversity. Journal of Applied Ecology 56: 1992–1997. https://doi.org/10.1111/1365-2664.13427.
Article
Google Scholar
Gerwing, J.J. 2002. Degradation of forests through logging and fire in the eastern Brazilian Amazon. Forest Ecology and Management 157: 131–141. https://doi.org/10.1016/S0378-1127(00)00644-7.
Article
Google Scholar
Giorgis, M., A.M. Cingolani, and M. Cabido. 2013. El efecto del fuego y las características topográficas sobre la vegetación y las propiedades del suelo en la zona de transición entre bosques y pastizales de las sierras de Córdoba, Argentina. Boletín la Sociedad Argentina Botánica 48 (3-4): 493–513. [in Spanish]. https://doi.org/10.31055/1851.2372.v48.n3-4.7555.
Article
Google Scholar
Griffiths, A.D., and B.W. Brook. 2014. Effect of fire on small mammals: a systematic review. International Journal of Wildland Fire 23 (7): 1034–1043. https://doi.org/10.1071/WF14026.
Article
Google Scholar
Gurevitch, J., G.A. Fox, G.M. Wardle, and D. Taub. 2011. Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecology Letters 14: 407–418.
Article
CAS
Google Scholar
Gurevitch, J., P.S. Curtis, and M.H. Jones. 2001. Meta-analysis in ecology. Advances in Ecological Research 32: 199–247. https://doi.org/10.1016/S0065-2504(01)32013-5.
Article
CAS
Google Scholar
Gurevitch, J., and L.V. Hedges. 1999. Statistical issues in ecological meta-analyses. Ecology 80 (4): 1142–1149. https://doi.org/10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2.
Article
Google Scholar
Gurvich, D.E., L. Enrico, and A.M. Cingolani. 2005. Linking plant functional traits with post fire sprouting vigour in woody species in central Argentina. Austral Ecology 30: 789–796. https://doi.org/10.1111/j.1442-9993.2005.01522.x.
Article
Google Scholar
Harris, R.M.B., T.A. Remenyi, G.J. Williamson, N.L. Bindoff, and D.M.G.S. Bowman. 2016. Climate-vegetation-fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system? WIRES Climate Change 7 (6): 910–931. https://doi.org/10.1002/wcc.428.
Article
Google Scholar
He, T., B.B. Lamont, and J.G. Pausas. 2019. Fire as a key driver of Earth’s biodiversity. Biological Reviews 94 (6): 1983–2010. https://doi.org/10.1111/brv.12544.
Article
PubMed
Google Scholar
Hedges, L.V., and I. Olkin. 2014. Statistical methods for meta-analysis. Orlando: Academic.
Google Scholar
Herrero, M., R. Torres, and D. Renison. 2016. Do wildfires promote woody species invasion in a fire-adapted ecosystem? Post-fire resprouting of native and non-native woody plants in central Argentina. Environmental Management 57 (2): 308–317. https://doi.org/10.1007/s00267-015-0616-8.
Article
PubMed
Google Scholar
Heydari, M., M. Faramarzi, and D. Pothier. 2016. Post-fire recovery of herbaceous species composition and diversity, and soil quality indicators one year after wildfire in a semi-arid oak woodland. Ecological Engineering 94: 688–697. https://doi.org/10.1016/j.ecoleng.2016.05.032.
Article
Google Scholar
Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25 (15): 1965–1978. https://doi.org/10.1002/joc.1276.
Article
Google Scholar
Hoffmann, B.D., and A.N. Andersen. 2003. Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecology 28 (4): 444–464. https://doi.org/10.1046/j.1442-9993.2003.01301.x.
Article
Google Scholar
Hoffmann, W.A., V.M.P.C. Lucatelli, F.J. Silva, I.N.C. Azeuedo, M.d.S. Marinho, A.M.S. Albuquerque, A.d.O. Lopes, and S.P. Moreira. 2004. Impact of the invasive alien grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Diversity and Distribution 10 (2): 99–103. doi: https://doi.org/10.1111/j.1366-9516.2004.00063.x
Hoffmann, W.A., and A.G. Moreira. 2002. The role of fire in population dynamics of woody plants. In Cerrados Brazil: ecology and natural history of a Neotropical savanna, ed. P.S. Oliviera and R.J. Marquis, 159–177. New York: Columbia University Press.
Google Scholar
Hoffmann, W.A., and O.T. Solbrig. 2003. The role of topkill in the differential response of savanna woody species to fire. Forest Ecology and Management 180: 273–286. https://doi.org/10.1016/S0378-1127(02)00566-2.
Article
Google Scholar
Jacobsen, A.L., M.F. Tobin, H.S. Toschi, M.I. Percolla, and R.B. Pratt. 2016. Structural determinants of increased susceptibility to dehydration-induced cavitation in post-fire resprouting chaparral shrubs. Plant, Cell and Environment 39 (11): 2473–2485. https://doi.org/10.1111/pce.12802.
Article
CAS
PubMed
Google Scholar
Jaureguiberry, P., A. Cuchietti, L.D. Gorné, G.A. Bertone, and S. Díaz. 2020. Post-fire resprouting capacity of seasonally dry forest species - two quantitative indices. Forest Ecology and Management 473: 118267. https://doi.org/10.1016/j.foreco.2020.118267.
Article
Google Scholar
Jennions, M.D., C.J. Lortie, M.S. Rosenberg, and H.R. Rothstein. 2013. Publication and related biases. In Handbook of meta-analysis in ecology and evolution, ed. J. Koricheva, J. Gurevitch, and K. Mendersen, 207–236. Princeton: Princeton University Press. https://doi.org/10.23943/princeton/9780691137285.003.0014.
Chapter
Google Scholar
Keeley, J.E. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire 18: 116–126. https://doi.org/10.1071/WF07049.
Article
Google Scholar
Keeley, J.E., W.J. Bond, R.A. Bradstock, J.G. Pausas, and P.W. Rundel. 2012. Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139033091.
Book
Google Scholar
Keeley, J.E., C.J. Fotheringham, and M. Baer-Keeley. 2005. Determinants of postfire recovery and succession in Mediterranean-climate shrublands of California. Ecological Applications 15 (5): 1515–1534. https://doi.org/10.1890/04-1005.
Article
Google Scholar
Keeley, J.E., J.G. Pausas, P.W. Rundel, W.J. Bond, and R.A. Bradstock. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16: 406–411. https://doi.org/10.1016/j.tplants.2011.04.002.
Article
CAS
PubMed
Google Scholar
Keeley, S.C., J.E. Keeley, S.M. Hutchinson, and A.W. Johnson. 1981. Postfire succession of the herbaceous flora in Southern California chaparral. Ecology 62 (6): 1608–1621. https://doi.org/10.2307/1941516.
Article
Google Scholar
Kelly, L.T., L. Brotons, K.M. Giljohann, M.A. McCarthy, J.G. Pausas, and A.L. Smith. 2018. Bridging the divide: integrating animal and plant paradigms to secure the future of biodiversity in fire-prone ecosystems. Fire 1: 29. https://doi.org/10.3390/fire1020029.
Article
Google Scholar
Knicker, H. 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85 (1): 91–118. https://doi.org/10.1007/s10533-007-9104-4.
Article
CAS
Google Scholar
Knoechelmann, C.M., and H.C. Morais. 2008. Visitas de formigas (Hymenoptera, Formicidae) a nectários extra-florais de Stryphnodendron adstringens (Mart.) Cov. (Fabaceae, Mimosoideae) em uma área de cerrado freqüentemente queimado. Revista Brasileira de Zoociências 10: 1 [in Portuguese].
Google Scholar
Kowaljow, E., M.S. Morales, J.L. Whitworth-Hulse, S.R. Zeballos, M.A. Giorgis, M.R. Catón, and D.E. Gurvich. 2019. A 55-year-old natural experiment gives evidence of the effects of changes in fire frequency on ecosystem properties in a seasonal subtropical dry forest. Land Degradation and Development 30 (3): 266–277. https://doi.org/10.1002/ldr.3219.
Article
Google Scholar
Kral, K.C., R.F. Limb, J.P. Harmon, and T.J. Hovick. 2017. Arthropods and fire: previous research shaping future conservation. Rangeland Ecology and Management 70 (5): 589–598. https://doi.org/10.1016/j.rama.2017.03.006.
Article
Google Scholar
Krawchuk, M.A., and M.A. Moritz. 2011. Constraints on global fire activity vary across a resource gradient. Ecology 92: 121–132. https://doi.org/10.1890/09-1843.1.
Article
PubMed
Google Scholar
Kunst, C., S. Bravo, J. Panigatti, et al., eds. 2003. Fuego en los ecosistemas Argentinos. Santiago del Estero: Ediciones INTA [in Spanish].
Google Scholar
Kunst, C., R. Ledesma, S. Bravo, et al. 2015. Fire history, fire ecology and management in the Argentine Chaco. In Current international perspectives on wildland fires, mankind and the environment, ed. B. Leblon and M. Alexander . Hauppauge: Nova Sciences Publishers.Chapter 8
Google Scholar
Kurten, E.L. 2013. Cascading effects of contemporaneous defaunation on tropical forest communities. Biological Conservation 163: 22–32. https://doi.org/10.1016/j.biocon.2013.04.025.
Article
Google Scholar
Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304 (5677): 5677, pp. 1623-1627. https://doi.org/10.1126/science.1097396.
Article
CAS
Google Scholar
Lazarina, M., J. Devalez, L. Neokosmidis, et al. 2019. Moderate fire severity is best for the diversity of most of the pollinator guilds in Mediterranean pine forests. Ecology 100: e02615. https://doi.org/10.1002/ecy.2615.
Article
PubMed
Google Scholar
Lee, D.E. 2018. Spotted Owls and forest fire: a systematic review and meta-analysis of the evidence. Ecosphere 9 (7): e02354. https://doi.org/10.1002/ecs2.2354.
Article
Google Scholar
Lehmann, C.E.R., T.M. Anderson, M. Sankaran, et al. 2014. Savanna vegetation-fire-climate relationships differ among continents. Science 343 (6170): 548–552. https://doi.org/10.1126/science.1247355.
Article
CAS
PubMed
Google Scholar
Longo, M.S., C. Urcelay, and E. Nouhra. 2011. Long term effects of fire on ectomycorrhizas and soil properties in Nothofagus pumilio forests in Argentina. Forest Ecology and Management 262 (3): 348–354. https://doi.org/10.1016/j.foreco.2011.03.041.
Article
Google Scholar
Longo, S., E. Nouhra, B.T. Goto, R.L. Berbara, and C. Urcelay. 2014. Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. Forest Ecology and Management 315: 86–94. https://doi.org/10.1016/j.foreco.2013.12.027.
Article
Google Scholar
Lorenz, T.J., K.T. Vierling, T.R. Johnson, and P.C. Fischer. 2015. The role of wood hardness in limiting nest site selection in avian cavity excavators. Ecological Applications 25 (4): 1016–1033. https://doi.org/10.1890/14-1042.1.
Article
PubMed
Google Scholar
Maestre, F.T., D.J. Eldridge, and S. Soliveres. 2016. A multifaceted view on the impacts of shrub encroachment. Applied Vegetation Science 19 (3): 369–370. https://doi.org/10.1111/avsc.12254.
Article
PubMed
PubMed Central
Google Scholar
Mandle, L., J. Bufford, I. Schmidt, and C. Daehler. 2011. Woody exotic plant invasions and fire: reciprocal impacts and consequences for native ecosystems. Biological Invasions 13: 1815–1827. https://doi.org/10.1007/s10530-011-0001-3.
Article
Google Scholar
Marcora, P.I., A.E. Ferreras, S.R. Zeballos, G. Funes, S. Longo, C. Urcelay, and P.A. Tecco. 2018. Context-dependent effects of fire and browsing on woody alien invasion in mountain ecosystems. Oecologia 188 (2): 479–490. https://doi.org/10.1007/s00442-018-4227-y.
Article
CAS
PubMed
Google Scholar
Mataix-Solera, J., A. Cerdà, V. Arcenegui, A. Jordán, and L.M. Zavala. 2011. Fire effects on soil aggregation: a review. Earth-Science Reviews 109P: 44–60. https://doi.org/10.1016/j.earscirev.2011.08.002.
Article
Google Scholar
Mazía, C.N., E.J. Chaneton, M. Machera, A. Uchitel, M.V. Feler, and C.M. Ghersa. 2010. Antagonistic effects of large- and small-scale disturbances on exotic tree invasion in a native tussock grassland relict. Biological Invasions 12 (9): 3109–3122. https://doi.org/10.1007/s10530-010-9702-2.
Article
Google Scholar
McLauchlan, K.K., P.E. Higuera, J. Miesel, B.M. Rogers, J. Schweitzer, J.K. Shuman, A.J. Tepley, J.M. Varner, T.T. Veblen, S.A. Adalsteinsson, J.K. Balch, P. Baker, E. Batllori, E. Bigio, P. Brando, M. Cattau, M.L. Chipman, J. Coen, R. Crandall, L. Daniels, N. Enright, W.S. Gross, B.J. Harvey, J.A. Hatten, S. Hermann, R.E. Hewitt, L.N. Kobziar, J.B. Landesmann, M.M. Loranty, S.Y. Maezumi, L. Mearns, M. Moritz, J.A. Myers, J.G. Pausas, A.F.A. Pellegrini, W.J. Platt, J. Roozeboom, H. Safford, F. Santos, R.M. Scheller, R.L. Sherriff, K.G. Smith, M.D. Smith, and A.C. Watts. 2020. Fire as a fundamental ecological process: research advances and frontiers. Journal of Ecology 108 (5): 2047–2069. https://doi.org/10.1111/1365-2745.13403.
Article
Google Scholar
Mestre, L.A.M., M.A. Cochrane, and J. Barlow. 2013. Long-term changes in bird communities after wildfires in the central Brazilian Amazon. Biotropica 45 (4): 480–488. https://doi.org/10.1111/btp.12026.
Article
Google Scholar
Miller, R.F., J.C. Chambers, D.A. Pyke, F.B. Pierson, and C. Jason Williams. 2013. A review of fire effects on vegetation and soils in the great basin region: response and ecological site characteristics. In USDA Forest Service General Technical Report RMRS-GTR-308. Fort Collins: USDA, Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-308.
Chapter
Google Scholar
Miller, R.G., R. Tangney, N.J. Enright, J.B. Fontaine, D.J. Merritt, M.K.J. Ooi, K.X. Ruthrof, and B.P. Miller. 2019. Mechanisms of fire seasonality effects on plant populations. Trends in Ecology & Evolution 34 (12): 1104–1117. https://doi.org/10.1016/j.tree.2019.07.009,.
Article
Google Scholar
Miranda, H.S., M.M.C. Bustamante, and A.C. Miranda. 2002. The fire factor. In The cerrados of Brazil: ecology and natural history of a neotropical savanna, ed. P. Olibeira and R. Marquis, 51–68. New York: Columbia University Press. https://doi.org/10.7312/oliv12042-005.
Chapter
Google Scholar
Morales, A.M., N. Politi, L.O. Rivera, C.G. Vivanco, and G.E. Defossé. 2020. Fire and distance from unburned forest influence bird assemblages in Southern Andean Yungas of Northwest Argentina: a case study. Fire Ecology 16: 15. https://doi.org/10.1186/s42408-020-00074-0.
Article
Google Scholar
Moretti, M., F. De Bello, S.P.M. Roberts, and S.G. Potts. 2009. Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. Journal of Animal Ecology 78: 98–108. https://doi.org/10.1111/j.1365-2656.2008.01462.x.
Article
Google Scholar
Murphy, B.P., and J. Russell-Smith. 2010. Fire severity in a northern Australian savanna landscape: the importance of time since previous fire. International Journal of Wildland. Fire 19: 46–51. https://doi.org/10.1071/WF08202.
Article
Google Scholar
Murphy, E.C., and W.A. Lehnhausen. 1998. Density and foraging ecology of woodpeckers following a stand-replacement fire. Journal of Wildlife Management 62 (4): 1359–1372. https://doi.org/10.2307/3802002.
Article
Google Scholar
Nakagawa, S., and E.S.E. Santos. 2012. Methodological issues and advances in biological meta-analysis. Evolutionary Ecology 26: 1253–1274. https://doi.org/10.1007/s10682-012-9555-5.
Article
Google Scholar
Nappi, A., P. Drapeau, J. Giroux, and J.L. Savard. 2003. Snag use by foraging black-backed woodpeckers (Picoides arcticus) in a recently burned eastern boreal forest. Auk 120 (2): 505–511. https://doi.org/10.1093/auk/120.2.505.
Article
Google Scholar
Nelson, Z.J., P.J. Weisberg, and S.G. Kitchen. 2014. Influence of climate and environment on post-fire recovery of mountain big sagebrush. International Journal of Wildland Fire 23: 131–142. https://doi.org/10.1071/WF13012.
Article
Google Scholar
Nogueira, J.M.P., S. Rambal, J.P.R.A.D. Barbosa, and F. Mouillot. 2017. Spatial pattern of the seasonal drought/burned area relationship across Brazilian biomes: sensitivity to drought metrics and global remote-sensing fire products. Climate 5 (2): 42. https://doi.org/10.3390/cli5020042.
Article
Google Scholar
O’Connor, R.C., J.H. Taylor, and J.B. Nippert. 2020. Browsing and fire decreases dominance of a resprouting shrub in woody encroached grassland. Ecology 101 (2): e02935. https://doi.org/10.1002/ecy.2935.
Article
PubMed
Google Scholar
Olson, D.M., E. Dinerstein, E.D. Wikramanayake, N.D. Burgess, G.V.N. Powell, E.C. Underwood, J.A. D’Amico, I. Itoua, H.E. Strand, J.C. Morrison, C.J. Loucks, T.F. Allnutt, T.H. Ricketts, Y. Kura, J.F. Lamoreux, W.W. Wettengel, P. Hedao, and K.R. Kassem. 2001. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51: 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.
Article
Google Scholar
Parisien, M.-A., and M.A. Moritz. 2009. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs 79 (1): 127–154. https://doi.org/10.1890/07-1289.1.
Article
Google Scholar
Pausas, J., and J.E. Keeley. 2009. A burning story: the role of fire in the history of life. Bioscience 59 (7): 593–601. https://doi.org/10.1525/bio.2009.59.7.10.
Article
Google Scholar
Pausas, J.G. 2019. Generalized fire response strategies in plants and animals. Oikos 128: 147–153. https://doi.org/10.1111/oik.05907.
Article
Google Scholar
Pausas, J.G., and R.A. Bradstock. 2007. Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Global Ecology and Biogeography 16 (3): 330–340. https://doi.org/10.1111/j.1466-8238.2006.00283.x.
Article
Google Scholar
Pausas, J.G., and V. de L. Dantas. 2017. Scale matters: fire-vegetation feedbacks are needed to explain tropical tree cover at the local scale. Global Ecology and Biogeography 26 (4): 395–399. https://doi.org/10.1111/geb.12562.
Article
Google Scholar
Pausas, J.G., and J.E. Keeley. 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytology 204: 55–65. https://doi.org/10.1111/nph.12921.
Article
Google Scholar
Pausas, J.G., and S. Paula. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecology and Biogeography. 21 (11): 1074–1082. https://doi.org/10.1111/j.1466-8238.2012.00769.x.
Article
Google Scholar
Pausas, J.G., and E. Ribeiro. 2013. The global fire-productivity relationship. Global Ecology and Biogeography 22 (6): 728–736. https://doi.org/10.1111/geb.12043.
Article
Google Scholar
Pausas, J.G., and E. Ribeiro. 2017. Fire and plant diversity at the global scale. Global Ecology and Biogeography. 26 (8): 889–897. https://doi.org/10.1111/geb.12596.
Article
Google Scholar
Pellegrini, A.F.A., A. Ahlström, S.E. Hobbie, P.B. Reich, L.P. Nieradzik, A.C. Staver, B.C. Scharenbroch, A. Jumpponen, W.R.L. Anderegg, J.T. Randerson, and R.B. Jackson. 2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553 (7687): 194–198. https://doi.org/10.1038/nature24668.
Article
CAS
PubMed
Google Scholar
Pellegrini, A.F.A., S.E. Hobbie, and P.B. Reich. 2020a. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecological Monographs 90 (4): e01409. https://doi.org/10.1002/ecm.1409.
Article
Google Scholar
Pellegrini, A.F.A., K.K. McLauchlan, S.E. Hobbie, M.C. Mack, A.L. Marcotte, D.M. Nelson, S.S. Perakis, P.B. Reich, and W. Kyle Whittinghill. 2020b. Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. Journal of Ecology 8 (4): 1426–1441. https://doi.org/10.1111/1365-2745.13351.
Article
CAS
Google Scholar
Pérez-Méndez, N., P. Jordano, C. García, and A. Valido. 2016. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Scientific Reports 6: 24820. https://doi.org/10.1038/srep24820.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pilon, N.A.L., M.G.B. Cava, W.A. Hoffmann, R.C.R. Abreu, A. Fidelis, and G. Durigan. 2021. The diversity of post-fire regeneration strategies in the cerrado ground layer. Journal of Ecology 109: 154–166. https://doi.org/10.1111/1365-2745.13456.
Article
Google Scholar
Pilon, N.A.L., W.A. Hoffmann, R.C.R. Abreu, and G. Durigan. 2018. Quantifying the short-term flowering after fire in some plant communities of a cerrado grassland. Plant Ecology and Diversity 11: 259–266. https://doi.org/10.1080/17550874.2018.1517396.
Article
Google Scholar
Pratt, R.B., A.L. Jacobsen, A.R. Ramirez, A.M. Helms, C.A. Traugh, M.F. Tobin, M.S. Heffner, and S.D. Davis. 2014. Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Global Change Biology 20 (3): 893–907. https://doi.org/10.1111/gcb.12477.
Article
PubMed
Google Scholar
Pressler, Y., J.C. Moore, and M.F. Cotrufo. 2019. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128: 309–327. https://doi.org/10.1111/oik.05738.
Article
Google Scholar
Prichard, S.J., C.S. Stevens-Rumann, and P.F. Hessburg. 2017. Tamm review: shifting global fire regimes: lessons from reburns and research needs. Forest Ecology and Management 396: 217–233. https://doi.org/10.1016/j.foreco.2017.03.035.
Article
Google Scholar
Pyšek, P., P.E. Hulme, D. Simberloff, S. Bacher, T.M. Blackburn, J.T. Carlton, W. Dawson, F. Essl, L.C. Foxcroft, P. Genovesi, J.M. Jeschke, I. Kühn, A.M. Liebhold, N.E. Mandrak, L.A. Meyerson, A. Pauchard, J. Pergl, H.E. Roy, H. Seebens, M. van Kleunen, M. Vilà, M.J. Wingfield, and D.M. Richardson. 2020. Scientists’ warning on invasive alien species. Biological Review 95 (6): 1511–1534. https://doi.org/10.1111/brv.12627.
Article
Google Scholar
R Core Team. 2019. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Google Scholar
Raffaele, E., M.A. Nuñez, J. Eneström, and M. Blackhall. 2016. Fire as mediator of pine invasion: evidence from Patagonia, Argentina. Biological Invasions 18: 597–601. https://doi.org/10.1007/s10530-015-1038-5.
Article
Google Scholar
Robinson, N.M., S.W.J. Leonard, E.G. Ritchie, M. Bassett, E.K. Chia, S. Buckingham, H. Gibb, A.F. Bennett, and M.F. Clarke. 2013. Refuges for fauna in fire-prone landscapes: their ecological function and importance. Journal of Applied Ecology 50: 1321–1329. https://doi.org/10.1111/1365-2664.12153.
Article
Google Scholar
Romano, N., and N. Ursino. 2020. Forest fire regime in a Mediterranean ecosystem: unraveling the mutual interrelations between rainfall seasonality, soil moisture, drought persistence, and biomass dynamics. Fire 3: 49. https://doi.org/10.3390/fire3030049.
Article
Google Scholar
Rostagno, C.M., G.E. Defossé, and H.F. Del Valle. 2006. Postfire vegetation dynamics in three rangelands of Northeastern Patagonia, Argentina. Rangeland Ecology and Management 59 (2): 163–170. https://doi.org/10.2111/05-020R1.1.
Article
Google Scholar
Schepps, J., S. Lohr, and T. Martin. 1999. Does tree hardness influence nest tree selection by excavating bird species? Auk 116: 658–665. https://doi.org/10.2307/4089327.
Article
Google Scholar
Scholes, R.J., and S.R. Archer. 1997. Tree-grass interactions in savannas. Annual Review of Ecology and Systematics 28: 517–544. https://doi.org/10.1146/annurev.ecolsys.28.1.517.
Article
Google Scholar
Silva, L.C.R., W.A. Hoffmann, D.R. Rossatto, M. Haridasan, A.C. Franco, and W.R. Horwath. 2013. Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant and Soil 373 (1-2): 829–842. https://doi.org/10.1007/s11104-013-1822-x.
Article
CAS
Google Scholar
Silveira, J.M., J. Barlow, J. Louzada, and P. Moutinho. 2010. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests. PLoS One 5 (9): 1–7. https://doi.org/10.1371/journal.pone.0012877.
Article
CAS
Google Scholar
Silveira, J.M., J. Louzada, J. Barlow, R. Andrade, L. Mestre, R. Solar, S. Lacau, and M.A. Cochrane. 2016. A multi-taxa assessment of biodiversity change after single and recurrent wildfires in a Brazilian Amazon forest. Biotropica 48: 170–180. https://doi.org/10.1111/btp.12267.
Article
Google Scholar
Souchie, F.F., J.R.R. Pinto, E. Lenza, L. Gomes, L. Maracahipes-Santos, and D.V. Silvério. 2017. Post-fire resprouting strategies of woody vegetation in the Brazilian savanna. Acta Botanica Brasilica 31 (2): 260–266. https://doi.org/10.1590/0102-33062016abb0376.
Article
Google Scholar
Staver, A.C., S. Archibald, and S.A. Levin. 2011. The Global extent and determinants of savanna and forest as alternative biome states. Science 334 (6053): 230–232. https://doi.org/10.1126/science.1210465.
Article
CAS
PubMed
Google Scholar
Torres, R.C., M.A. Giorgis, C. Trillo, et al. 2014. Post-fire recovery occurs overwhelmingly by resprouting in the Chaco Serrano forest of Central Argentina. Austral Ecology 39: 346–354. https://doi.org/10.1111/aec.12084.
Article
Google Scholar
Tuck, S.L., C. Winqvist, F. Mota, J. Ahnström, L.A. Turnbull, and J. Bengtsson. 2014. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. Journal of Applied Ecology 51 (3): 746–755. https://doi.org/10.1111/1365-2664.12219.
Article
Google Scholar
Tummers, B. 2006. DataThief III v.1.1. Available from http://www.datathief.org/.
Uehara-Prado, M., A. de M. Bello, J. de O. Fernandes, A.J. Santos, I.A. Silva, and M.V. Cianciaruso. 2010. Abundance of epigaeic arthropods in a Brazilian savanna under different fire frequencies. Zoologia 27 (5): 718–724. https://doi.org/10.1590/S1984-46702010000500008.
Article
Google Scholar
Veblen, T.T., T. Kitzberger, E. Raffaele, and D.C. Lorenz. 2003. Fire history and vegetation changes in northern Patagonia, Argentina BT. In Fire and climatic change in temperate ecosystems of the western Americas, ed. T.T. Veblen, W.L. Baker, G. Montenegro, and T.W. Swetnam, 265–295. New York: Springer. https://doi.org/10.1007/0-387-21710-X_9.
Chapter
Google Scholar
Veblen, T.T., T. Kitzberger, E. Raffaele, M. Mermoz, M.E. González, J.S. Sibold, and A. Holz. 2008. The historical range of variability of fires in the Andean Patagonian Nothofagus forest region. International Journal of Wildland Fire 17 (6): 724–741. https://doi.org/10.1071/WF07152.
Article
Google Scholar
Vidaller, C., T. Dutoit, H. Ramone, and A. Bischoff. 2019. Fire increases the reproduction of the dominant grass Brachypodium retusum and Mediterranean steppe diversity in a combined burning and grazing experiment. Applied Vegetation Science 22: 127–137. https://doi.org/10.1111/avsc.12418.
Article
Google Scholar
Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36 (3): 1–48. https://doi.org/10.18637/jss.v036.i03.
Article
Google Scholar
Violle, C., M. Navas, D. Vile, and E. Kazakou. 2007. Let the concept of trait be functional! Oikos 116 (5): 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x.
Article
Google Scholar
Vitousek, P.M., and R.W. Howarth. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13 (2): 87–115. https://doi.org/10.1007/BF00002772.
Article
Google Scholar
Whelan, R.J., L. Rodgerson, C.R. Dickman, and E.F. Sutherland. 2002. Critical life cycles of plants and animals: developing a process-based understanding of population changes in fire-prone landscapes. In Flammable Australia: the fire regimes and biodiversty of a continent, ed. R.A. Bradstock, J.E. Williams, and A.M. Gill, 94–124. Cambridge: Cambridge University Press.
Google Scholar
Whittaker, R.H. 1975. Communities and ecosystems. 2nd ed. New York: Macmillan Publishing.
Google Scholar
Whittaker, R.H., and P.I. Marks. 1975. Methods of assessing terrestrial productivity. In Primary productivity of the biosphere, ed. H. Lieth and R.H. Whittaker, 55–118. New York: Springer. https://doi.org/10.1007/978-3-642-80913-2_4.
Chapter
Google Scholar
Winkler, H., and D.A. Christie. 2002. Family Picidae (woodpeckers). In Handbook of the birds of the world, volume 7: Jacamars to Woodpeckers, ed. J. del Hoyo, A. Elliott, and J. Sargatal, 296–555. Barcelona: Lynx Edicions.
Google Scholar
Zeballos, S.R., M.A. Giorgis, M.R. Cabido, A.T.R. Acosta, M. del Rosario Iglesias, and J.J. Cantero. 2020. The lowland seasonally dry subtropical forests in central Argentina: vegetation types and a call for conservation. Vegetation Classification and Survey 1 (1): 87–102. https://doi.org/10.3897/VCS/2020/38013.
Article
Google Scholar