Abrego, N., and I. Salcedo. 2013. Variety of woody debris as the factor influencing wood-inhabiting fungal richness and assemblages: is it a question of quantity or quality? Forest Ecology and Management 291: 377–385. doi: 10.1016/j.foreco.2012.11.025
Article
Google Scholar
Albini, F. 1976. Estimating wildfire behavior and effects. USDA Forest Service General Technical Report INT-30, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA.
Google Scholar
Aloe, A.M., B.J. Becker, and T.D. Pigott. 2010. An alternative to R
2 for assessing linear models of effect size. Research Synthesis Methods 1: 272–283. doi: 10.1002/jrsm.23
Article
PubMed
Google Scholar
Anderson, R., and E. Menges. 1997. Effects of fire on sandhill herbs: nutrients, mycorrhizae, and biomass allocation. American Journal of Botany 84: 938–948. doi: 10.2307/2446284
Article
PubMed
CAS
Google Scholar
Baar, J., T.R. Horton, A.M. Kretzer, and T.D. Bruns. 1999. Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytologist 143: 409–418. doi: 10.1046/j.1469-8137.1999.00452.x
Article
Google Scholar
Bacon, A.R., S.R. Jackson, V.J. Kurth, S.C. Hart, and N.C. Johnson. 2009. Mycorrhizal inoculation potentials along a stand-replacing fire chronosequence in Southwestern ponderosa pine forests. <https://eco.confex.com/eco/2009/techprogram/P18186.HTM>. Accessed 8 June 2017.
Bader, P., S. Jansson, and B.G. Jonsson. 1995. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biological Conservation 72: 355–362. doi: 10.1016/0006-3207(94)00029-P
Article
Google Scholar
Baldrian, P., M. Kolařík, M. Štursová, J. Kopecký, V. Valášková, T. Větrovský, L. Žifčáková, J. Šnajdr, J. Rídl, Č. Vlček, and J. Voříšková. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal 6: 248–258. doi: 10.1038/ismej.2011.95
Article
PubMed
CAS
Google Scholar
Ballard, T.M. 2000. Impacts of forest management on northern forest soils. Forest Ecology and Management 133: 37–42. doi: 10.1016/S0378-1127(99)00296-0
Article
Google Scholar
Barker, J.S., S.W. Simard, M.D. Jones, and D.M. Durall. 2013. Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting. Oecologia 172: 1179–1189. doi: 10.1007/s00442-012-2562-y
Article
PubMed
Google Scholar
Bartoli, A., R. Gerdol, and G. Massari. 1991. Soil fungi succession in a Mediterranean macchia after fire. Revue d’écologie et de biologie du sol 28: 387–402.
Google Scholar
Bastias, B.A., Z.Q. Huang, T. Blumfield, Z. Xu, and J.W.G. Cairney. 2006. Influence of repeated prescribed burning on the soil fungal community in an eastern Australian wet sclerophyll forest. Soil Biology and Biochemistry 38: 3492–3501. doi: 10.1016/j.soilbio.2006.06.007
Article
CAS
Google Scholar
Baxter, J.W., and J. Dighton. 2001. Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytologist 152: 139–149. doi: 10.1046/j.0028-646x.2001.00245.x
Article
Google Scholar
Bellgard, S.E., R.J. Whelan, and R.M. Muston. 1994. The impact of wildfire on vesicular-arbuscular mycorrhizal fungi and their potential to influence the re-establishment of post-fire plant communities. Mycorrhiza 4: 139–146. doi: 10.1007/BF00203532
Article
Google Scholar
Bentivenga, S.P., and B.A.D. Hetrick. 1991. Relationship between mycorrhizal activity, burning, and plant productivity in tallgrass prairie. Canadian Journal of Botany 69: 2597–2602. doi: 10.1139/b91-323
Article
Google Scholar
Berglund, H., M.T. Jönsson, R. Penttilä, and I. Vanha-Majamaa. 2011. The effects of burning and dead-wood creation on the diversity of pioneer wood-inhabiting fungi in managed boreal spruce forests. Forest Ecology and Management 261: 1293–1305. doi: 10.1016/j.foreco.2011.01.008
Article
Google Scholar
Binkley, D., and R. Fisher. 2012. Ecology and management of forest soils. John Wiley & Sons, Hoboken, New Jersey, USA.
Google Scholar
Bond, W.J., and J.E. Keeley. 2005. Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution 20: 387–394. doi: 10.1016/j.tree.2005.04.025
Article
Google Scholar
Bond, W.J., F.I. Woodward, and G.F. Midgley. 2005. The global distribution of ecosystems in a world without fire. New Phytologist 165: 525–538. doi: 10.1111/j.1469-8137.2004.01252.x
Article
PubMed
CAS
Google Scholar
Bruns, T.D. 1995. Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Pages 63–73 in: H.P. Collins, G.P. Robertson, and M.J. Klug, editors. The significance and regulation of soil biodiversity. Springer Netherlands, Dordrecht, The Netherlands. doi: 10.1007/978-94-011-0479-1_5
Chapter
Google Scholar
Buscardo, E., S. Rodríguez-Echeverría, M.P. Martín, P. De Angelis, J.S. Pereira, and H. Freitas. 2010. Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biology 114: 628–636. doi: 10.1016/j.funbio.2010.05.004
Article
PubMed
Google Scholar
Cairney, J.W.G., and B.A. Bastias. 2007. Influences of fire on forest soil fungal communities. Canadian Journal of Forest Research 37: 207–215. doi: 10.1139/x06-190
Article
Google Scholar
Chapin, F.S., P.A. Matson, and P. Vitousek. 2011. Principles of terrestrial ecosystem ecology. Springer Science & Business Media, New York, New York, USA. doi: 10.1007/978-1-4419-9504-9
Book
Google Scholar
Chen, D.M., and J.W.G. Cairney. 2002. Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites. Mycological Research 106: 532–540. doi: 10.1017/S0953756202005890
Article
CAS
Google Scholar
Coppoletta, M., K.E. Merriam, and B.M. Collins. 2016. Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecological Applications 26: 686–699. doi: 10.1890/15-0225
Article
PubMed
Google Scholar
Dahlberg, A., L. Jonsson, and J.-E. Nylund. 1997. Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Canadian Journal of Botany 75: 1323–1335. doi: 10.1139/b97-844
Article
Google Scholar
Dahlberg, A., J. Schimmel, A.F.S. Taylor, and H. Johannesson. 2001. Post-fire legacy of ectomycorrhizal fungal communities in the Swedish boreal forest in relation to fire severity and logging intensity. Biological Conservation 100: 151–161. doi: 10.1016/S0006-3207(00)00230-5
Article
Google Scholar
DeBano, L.F. 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology 231–232: 195–206. doi: 10.1016/S0022-1694(00)00194-3
Article
Google Scholar
de Román, M., and A.M. de Miguel. 2005. Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period. Mycorrhiza 15: 471–482. doi: 10.1007/s00572-005-0353-6
Article
PubMed
Google Scholar
Dhillion, S.S., R.C. Anderson, and A.E. Liberta. 1988. Effect of fire on the mycorrhizal ecology of little bluestem (Schizachyrium scoparium). Canadian Journal of Botany 66: 706–713. doi: 10.1139/b88-102
Article
Google Scholar
Dore, S., T.E. Kolb, M. Montes-Helu, S.E. Eckert, B.W. Sullivan, B.A. Hungate, J.P. Kaye, S.C. Hart, G.W. Koch, and A. Finkral. 2010. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning. Ecological Applications 20: 663–683. doi: 10.1890/09-0934.1
Article
PubMed
CAS
Google Scholar
Dove, N.C., and W.S. Keeton. 2015. Structural complexity enhancement increases fungal species richness in northern hardwood forests. Fungal Ecology 13: 181–192. doi: 10.1016/j.funeco.2014.09.009
Article
Google Scholar
Dunn, P.H., S.C. Barro, and M. Poth. 1985. Soil moisture affects survival of microorganisms in heated chaparral soil. Soil Biology and Biochemistry 17: 143–148. doi: 10.1016/0038-0717(85)90105-1
Article
Google Scholar
Eom, A., D.C. Hartnett, G.W.T. Wilson, and D.A.H. Figge. 1999. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. The American Midland Naturalist 142: 55–70. doi: 10.1674/0003-0031(1999)142[0055:TEOFMA]2.0.CO;2
Article
Google Scholar
Fernandes, P.M., and H.S. Botelho. 2003. A review of prescribed burning effectiveness in fire hazard reduction. International Journal of Wildland Fire 12: 117–128. doi: 10.1071/WF02042
Article
Google Scholar
Finlay, R.D. 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany 59: 1115–1126. doi: 10.1093/jxb/ern059
Article
PubMed
CAS
Google Scholar
Floudas, D., M. Binder, R. Riley, K. Barry, R.A. Blanchette, B. Henrissat, A.T. Martínez, R. Otillar, J.W. Spatafora, J.S. Yadav, A. Aerts, I. Benoit, A. Boyd, A. Carlson, A. Copeland, P.M. Coutinho, R.P. de Vries, P. Ferreira, K. Findley, B. Foster, J. Gaskell, D. Glotzer, P. Górecki, J. Heitman, C. Hesse, C. Hori, K. Igarashi, J.A. Jurgens, N. Kallen, P. Kersten, A. Kohler, U. Kües, T.K.A. Kumar, A. Kuo, K. LaButti, L.F. Larrondo, E. Lindquist, A. Ling, V. Lombard, S. Lucas, T. Lundell, R. Martin, D.J. McLaughlin, I. Morgenstern, E. Morin, C. Murat, L.G. Nagy, M.Nolan, R.A. Ohm, A. Patyshakuliyeva, A.Rokas, F.J. Ruiz-Dueñas, G. Sabat, A. Salamov, M. Samejima, J. Schmutz, J.C. Slot, F.S. John, J. Stenlid, H. Sun, S. Sun, K. Syed, A. Tsang, A. Wiebenga, D. Young, A. Pisabarro, D.C. Eastwood, F. Martin, D. Cullen, I.V. Grigoriev, and D.S. Hibbett. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336: 1715–1719. doi: 10.1126/science.1221748
Article
PubMed
CAS
Google Scholar
Fogel, R. 1976. Ecological studies of hypogeous fungi. II. Sporocarp phenology in a western Oregon Douglas fir stand. Canadian Journal of Botany 54: 1152–1162. doi: 10.1139/b76-124
Google Scholar
Frankland, J.C. 1998. Fungal succession—unravelling the unpredictable. Mycological Research 102: 1–15. doi: 10.1017/S0953756297005364
Article
Google Scholar
Fujimura, K.E., J.E. Smith, T.R. Horton, N.S. Weber, and J.W. Spatafora. 2004. Pezizalean mycorrhizas and sporocarps in ponderosa pine (Pinus ponderosa) after prescribed fires in eastern Oregon, USA. Mycorrhiza 15: 79–86. doi: 10.1007/s00572-004-0303-8
Article
PubMed
Google Scholar
Gange, A.C., V.K. Brown, and G.S. Sinclair. 1993. Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Functional Ecology 7: 616–622. doi: 10.2307/2390139
Article
Google Scholar
Glassman, S.I., C.R. Levine, A.M. DiRocco, J.J. Battles, and T.D. Bruns. 2015. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. The ISME Journal: 1228–1239.
Article
PubMed
PubMed Central
Google Scholar
Goberna, M., C. García, H. Insam, M.T. Hernández, and M. Verdú. 2012. Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions. Microbial Ecology 64: 242–255. doi: 10.1007/s00248-011-9995-4
Article
PubMed
CAS
Google Scholar
Grishkan, I. 2016. Influence of wildfire on diversity of culturable soil microfungal communities in the Mount Carmel forest, Israel. Plant Biosystems — An International Journal Dealing with all Aspects of Plant Biology 150: 1–10. doi: 10.1080/11263504.2014.984007
Article
Google Scholar
Gurevitch, J., and L.V. Hedges. 1999. Statistical issues in ecological meta-analyses. Ecology 80: 1142–1149. doi: 10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2
Article
Google Scholar
Hamman, S.T., I.C. Burke, and M.E. Stromberger. 2007. Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biology and Biochemistry 39: 1703–1711. doi: 10.1016/j.soilbio.2007.01.018
Article
CAS
Google Scholar
Hanson, C.A., S.D. Allison, M.A. Bradford, M.D. Wallenstein, and K.K. Treseder. 2008. Fungal taxa target different carbon sources in forest soil. Ecosystems 11: 1157–1167. doi: 10.1007/s10021-008-9186-4
Article
CAS
Google Scholar
Hartnett, D.C., R.J. Samenus, L.E. Fischer, and B.A.D. Hetrick. 1994. Plant demographic responses to mycorrhizal symbiosis in tallgrass prairie. Oecologia 99: 21–26. doi: 10.1007/BF00317079
Article
PubMed
CAS
Google Scholar
Hart, S.C., A.T. Classen, and R.J. Wright. 2005a. Long-term interval burning alters fine root and mycorrhizal dynamics in a ponderosa pine forest. Journal of Applied Ecology 42: 752–761. doi: 10.1111/j.1365-2664.2005.01055.x
Article
Google Scholar
Hart, S.C., T.H. DeLuca, G.S. Newman, M.D. MacKenzie, and S.I. Boyle. 2005b. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management 220: 166–184. doi: 10.1016/j.foreco.2005.08.012
Article
Google Scholar
Hedges, L.V., J. Gurevitch, and P.S. Curtis. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80: 1150–1156. doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
Article
Google Scholar
van der Heijden, M.G.A., J.N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T. Boller, A. Wiemken, and I.R. Sanders. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72. doi: 10.1038/23932
Article
CAS
Google Scholar
Hernández-Rodríguez, M., J.A. Oria-de-Rueda, and P. Martín-Pinto. 2013. Post-fire fungal succession in a Mediterranean ecosystem dominated by Cistus ladanifer L. Forest Ecology and Management 289: 48–57. doi: 10.1016/j.foreco.2012.10.009
Article
Google Scholar
Herr, D., L. Duchesne, R. Tellier, R. McAlpine, and R. Peterson. 1994. Effect of prescribed burning on the ectomycorrhizal infectivity of a forest soil. International Journal of Wildland Fire 4: 95–102. doi: 10.1071/WF9940095
Article
Google Scholar
Hewitt, R.E., E. Bent, T.N. Hollingsworth, F.S. Chapin, and D.L. Taylor. 2013. Resilience of arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs. Ecoscience 20: 296–310. doi: 10.2980/20-3-3620
Article
Google Scholar
Hobbie, E.A., and T.R. Horton. 2007. Evidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition. New Phytologist 173: 447–449. doi: 10.1111/j.1469-8137.2007.01984.x
Article
PubMed
CAS
Google Scholar
Holden, S.R., A. Gutierrez, and K.K. Treseder. 2013. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16: 34–46. doi: 10.1007/s10021-012-9594-3
Article
CAS
Google Scholar
Horton, T.R., and T.D. Bruns. 2001. The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology 10: 1855–1871. doi: 10.1046/j.0962-1083.2001.01333.x
Article
PubMed
CAS
Google Scholar
Horton, T.R., E. Cázares, and T.D. Bruns. 1998. Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8: 11–18. doi: 10.1007/s005720050205
Article
Google Scholar
Ingham, R.E., J.A. Trofymow, E.R. Ingham, and D.C. Coleman. 1985. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecological Monographs 55: 119–140. doi: 10.2307/1942528
Article
Google Scholar
Izzo, A., M. Canright, and T.D. Bruns. 2006. The effects of heat treatments on ectomycorrhizal resistant propagules and their ability to colonize bioassay seedlings. Mycological Research 110: 196–202. doi: 10.1016/j.mycres.2005.08.010
Article
PubMed
Google Scholar
Jones, M.D., D.M. Durall, and J.W.G. Cairney. 2003. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytologist 157: 399–422. doi: 10.1046/j.1469-8137.2003.00698.x
Article
Google Scholar
Jonsson, L., A. Dahlberg, M.-C. Nilsson, O. Zackrisson, and O. Kårén. 1999. Ectomycorrhizal fungal communities in late-successional Swedish boreal forests, and their composition following wildfire. Molecular Ecology 8: 205–215. doi: 10.1046/j.1365-294x.1999.00553.x
Article
Google Scholar
Jonsson, L.M., M.-C. Nilsson, D.A. Wardle, and O. Zackrisson. 2001. Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93: 353–364. doi: 10.1034/j.1600-0706.2001.930301.x
Article
Google Scholar
Junninen, K., J. Kouki, and P. Renvall. 2008. Restoration of natural legacies of fire in European boreal forests: an experimental approach to the effects on wood-decaying fungi. Canadian Journal of Forest Research 38: 202–215. doi: 10.1139/X07-145
Article
Google Scholar
Kaye, J.P., S.C. Hart, P.Z. Fulé, W.W. Covington, M.M. Moore, and M.W. Kaye. 2005. Initial carbon, nitrogen, and phosphorus fluxes following ponderosa pine restoration treatments. Ecological Applications 15: 1581–1593. doi: 10.1890/04-0868
Article
Google Scholar
Kipfer, T., B. Moser, S. Egli, T. Wohlgemuth, and J. Ghazoul. 2011. Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the central Alps. Oecologia 167: 219–228. doi: 10.1007/s00442-011-1981-5
Article
PubMed
Google Scholar
Korb, J.E., N.C. Johnson, and W.W. Covington. 2003. Arbuscular mycorrhizal propagule densities respond rapidly to ponderosa pine restoration treatments. Journal of Applied Ecology 40: 101–110. doi: 10.1046/j.1365-2664.2003.00781.x
Article
Google Scholar
Kurth, V.J., N. Fransioli, P.Z. Fulé, S.C. Hart, and C.A. Gehring. 2013. Stand-replacing wildfires alter the community structure of wood-inhabiting fungi in southwestern ponderosa pine forests of the USA. Fungal Ecology 6: 192–204. doi: 10.1016/j.funeco.2013.01.006
Article
Google Scholar
Longo, S., E. Nouhra, B.T. Goto, R.L. Berbara, and C. Urcelay. 2014. Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. Forest Ecology and Management 315: 86–94. doi: 10.1016/j.foreco.2013.12.027
Article
Google Scholar
López-López, J.A., F. Marín-Martínez, J. Sánchez-Meca, W. Van den Noortgate, and W. Viechtbauer. 2014. Estimation of the predictive power of the model in mixed-effects meta-regression: a simulation study. British Journal of Mathematical and Statistical Psychology 67: 30–48. doi: 10.1111/bmsp.12002
Article
PubMed
Google Scholar
MacKenzie, M.D., T.H. DeLuca, and A. Sala. 2004. Forest structure and organic horizon analysis along a fire chronosequence in the low elevation forests of western Montana. Forest Ecology and Management 203: 331–343. doi: 10.1016/j.foreco.2004.08.003
Article
Google Scholar
Mah, K., L.E. Tackaberry, K.N. Egger, and H.B. Massicotte. 2001. The impacts of broadcast burning after clear-cutting on the diversity of ectomycorrhizal fungi associated with hybrid spruce seedlings in central British Columbia. Canadian Journal of Forest Research 31: 224–235. doi: 10.1139/x00-158
Article
Google Scholar
Mardji, D. 2014. Diversity and dominance of ectomycorrhizal fungi on after burned and unburned forests in Kutai National Park (Indonesia). International Journal of Innovation and Applied Studies 5: 344–353.
Google Scholar
Martín-Pinto, P., H. Vaquerizo, F. Peñalver, J. Olaizola, and J.A. Oria-de-Rueda. 2006. Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifer and Pinus pinaster in Spain. Forest Ecology and Management 225: 296–305. doi: 10.1016/j.foreco.2006.01.006
Article
Google Scholar
Medve, R.J. 1985. The effect of fire on the root hairs and mycorrhizae of Liatris spicata. Ohio Journal of Science 85:151–154.
Google Scholar
Miller, J.D., and A.E. Thode. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment 109: 66–80. doi: 10.1016/j.rse.2006.12.006
Article
Google Scholar
Miller, S.L., T.M. McClean, N.L. Stanton, and S.E. Williams. 1998. Mycorrhization, physiognomy, and first-year survivability of conifer seedlings following natural fire in Grand Teton National Park. Canadian Journal of Forest Research 28: 115–122. doi: 10.1139/x97-195
Article
Google Scholar
Milne, J. 2002. Post-fire colonization of Cistus creticus L. seedlings by ectomycorrhizal fungi in Aleppo pine forests in central Greece. Dissertation, University of Edinburgh, Scotland, United Kingdom.
Google Scholar
Motiejūnaitė, J., G. Adamonytė, R. Iršėnaitė, S. Juzėnas, J. Kasparavičius, E. Kutorga, and S. Markovskaja. 2014. Early fungal community succession following crown fire in Pinus mugo stands and surface fire in Pinus sylvestris stands. European Journal of Forest Research 133: 745–756. doi: 10.1007/s10342-013-0738-6
Article
Google Scholar
Neary, D.G., C.C. Klopatek, L.F. DeBano, and P.F. Folliott. 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management 122: 51–71. doi: 10.1016/S0378-1127(99)00032-8
Article
Google Scholar
Nielsen, U.N., E. Ayres, D.H. Wall, and R.D. Bardgett. 2011. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science 62: 105–116. doi: 10.1111/j.1365-2389.2010.01314.x
Article
CAS
Google Scholar
Nordén, B., M. Ryberg, F. Götmark, and B. Olausson. 2004. Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biological Conservation 117: 1–10. doi: 10.1016/S0006-3207(03)00235-0
Article
Google Scholar
Oliver, A.K., M.A. Callaham Jr., and A. Jumpponen. 2015. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem. Forest Ecology and Management 345: 1–9. doi: 10.1016/j.foreco.2015.02.020
Article
Google Scholar
Olsson, J., and B.G. Jonsson. 2010. Restoration fire and wood-inhabiting fungi in a Swedish Pinus sylvestris forest. Forest Ecology and Management 259: 1971–1980. doi: 10.1016/j.foreco.2010.02.008
Article
Google Scholar
Parke, J.L., R.G. Linderman, and J.M. Trappe. 1983. Effect of root zone temperature on ectomycorrhiza and vesicular-arbuscular mycorrhiza formation in disturbed and undisturbed forest soils of southwest Oregon. Canadian Journal of Forest Research 13: 657–665. doi: 10.1139/x83-094
Article
Google Scholar
Peay, K.G., M. Garbelotto, and T.D. Bruns. 2009. Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. Journal of Ecology 97: 537–547. doi: 10.1111/j.1365-2745.2009.01489.x
Article
Google Scholar
Perry, D.A., M.P. Amaranthus, J.G. Borchers, S.L. Borchers, and R.E. Brainerd. 1989. Bootstrapping in ecosystems. BioScience 39: 230–237. doi: 10.2307/1311159
Article
Google Scholar
Perry, D.A., R. Molina, and M.P. Amaranthus. 1987. Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Canadian Journal of Forest Research 17: 929–940. doi: 10.1139/x87-145
Article
Google Scholar
Persiani, A., F. Lombardi, D. Lunghini, V. Granito, R. Tognetti, O. Maggi, S. Pioli, and M. Marchetti. 2015. Stand structure and deadwood amount influences saproxylic fungal biodiversity in Mediterranean mountain unmanaged forests. <http://www.sisef.it/iforest/> Accessed 26 January 2016.
Persiani, A.M., and O. Maggi. 2013. Species-abundance distribution patterns of soil fungi: contribution to the ecological understanding of their response to experimental fire in Mediterranean maquis (southern Italy). Mycologia 105: 260–276. doi: 10.3852/11-425
Article
PubMed
Google Scholar
Petersen, P.M. 1970. Danish fireplace fungi—an ecological investigation on fungi on burns. Dansk Botanisk Arkiv 27: 1–97.
Google Scholar
Phillips, R.P., E. Brzostek, and M.G. Midgley. 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist 199: 41–51. doi: 10.1111/nph.12221
Article
PubMed
CAS
Google Scholar
Pietikäinen, J., O. Kiikkilä, and H. Fritze. 2000. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89: 231–242. doi: 10.1034/j.1600-0706.2000.890203.x
Article
Google Scholar
Raman, N., and N. Nagarajan. 1996. Effect of forest fire on VAM fungi in a tropical forest of southern India. The Commonwealth Forestry Review 75: 247–252.
Google Scholar
Rashid, A., T. Ahmed, N. Ayub, and A.G. Khan. 1997. Effect of forest fire on number, viability and post-fire re-establishment of arbuscular mycorrhizae. Mycorrhiza 7: 217–220. doi: 10.1007/s005720050183
Article
Google Scholar
R Development Core Team. 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Australia.
Google Scholar
Rincón, A., and J.J. Pueyo. 2010. Effect of fire severity and site slope on diversity and structure of the ectomycorrhizal fungal community associated with post-fire regenerated Pinus pinaster Ait. seedlings. Forest Ecology and Management 260: 361–369. doi: 10.1016/j.foreco.2010.04.028
Article
Google Scholar
Rincón, A., B.P. Santamaría, L. Ocaña, and M. Verdú. 2014. Structure and phylogenetic diversity of post-fire ectomycorrhizal communities of maritime pine. Mycorrhiza 24: 131–141. doi: 10.1007/s00572-013-0520-0
Article
PubMed
Google Scholar
Robinson, R.M., A.E. Mellican, and R.H. Smith. 2008. Epigeous macrofungal succession in the first five years following a wildfire in karri (Eucalyptus diversicolor) regrowth forest in Western Australia. Austral Ecology 33: 807–820. doi: 10.1111/j.1442-9993.2008.01853.x
Article
Google Scholar
Rohatgi, A. 2014. WebPlotDigitizer. <http://arohatgi.info/WebPlotDigitizer>. Accessed 1 October 2014.
Rosenberg, M.S., D.C. Adams, and J. Gurevitch. 1997. MetaWin: statistical software for meta-analysis with resampling tests. Sinauer Associates, Sunderland, Massachusetts, USA.
Google Scholar
Rothermel, R., 1972. A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service INT-RP-115, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA.
Google Scholar
Schoenberger, M.M., and D.A. Perry. 1982. The effect of soil disturbance on growth and ectomycorrhizae of Douglas-fir and western hemlock seedlings: a greenhouse bioassay. Canadian Journal of Forest Research 12: 343–353. doi: 10.1139/x82-050
Article
Google Scholar
Scott, J.H., and R.E. Burgan. 2005. Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. USDA Forest Service General Technical Report RMRS-GTR-153, Rocky Mountain Research Station, Fort Collins, Colorado, USA.
Book
Google Scholar
Senthilkumar, K., S. Manian, K. Udaiyan, and V. Sugavanam. 1995. Effect of burning on soil nutrient status and abundance of VA-mycorrhizal fungi in a savannah type grassland ecosystem in south India. Tropics 4: 173–186. doi: 10.3759/tropics.4.173
Article
Google Scholar
Setälä, H., and M.A. McLean. 2004. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139: 98–107. doi: 10.1007/s00442-003-1478-y
Article
PubMed
Google Scholar
Smith, J.E., D. McKay, C.G. Niwa, W.G. Thies, G. Brenner, and J.W. Spatafora. 2004. Shortterm effects of seasonal prescribed burning on the ectomycorrhizal fungal community and fine root biomass in ponderosa pine stands in the Blue Mountains of Oregon. Canadian Journal of Forest Research 34: 2477–2491. doi: 10.1139/x04-124
Article
CAS
Google Scholar
Smith, S.E., and D.J. Read. 2008. Mycorrhizal symbiosis. Third edition. Academic Press, London, England, United Kingdom.
Google Scholar
St. John, T.V., and P.W. Rundel. 1976. The role of fire as a mineralizing agent in a Sierran coniferous forest. Oecologia 25: 35–45. doi: 10.1007/BF00345032
Article
PubMed
Google Scholar
Straatsma, G., F. Ayer, and S. Egli. 2001. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycological Research 105: 515–523. doi: 10.1017/S0953756201004154
Article
Google Scholar
Sun, H., M. Santalahti, J. Pumpanen, K. Köster, F. Berninger, T. Raffaello, A. Jumpponen, F.O. Asiegbu, and J. Heinonsalo. 2015. Fungal community shifts in structure and function across a boreal forest fire chronosequence. Applied and Environmental Microbiology 81: 7869–7880. doi: 10.1128/AEM.02063-15
Article
PubMed
PubMed Central
CAS
Google Scholar
Sýkorová, Z., K. Ineichen, A. Wiemken, and D. Redecker. 2007. The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18: 1–14. doi: 10.1007/s00572-007-0147-0
Article
PubMed
CAS
Google Scholar
Tipton, A.G. 2016. Restoration at the roots: mycorrhizal interactions and habitat in glades and prairies. Dissertation, University of Missouri, Columbia, USA.
Google Scholar
Toberman, H., C. Chen, T. Lewis, and J.J. Elser. 2014. High-frequency fire alters C: N: P stoichiometry in forest litter. Global Change Biology 20: 2321–2331. doi: 10.1111/gcb.12432
Article
PubMed
Google Scholar
Torres, P., and M. Honrubia. 1997. Changes and effects of a natural fire on ectomycorrhizal inoculum potential of soil in a Pinus halepensis forest. Forest Ecology and Management 96: 189–196. doi: 10.1016/S0378-1127(97)00058-3
Article
Google Scholar
Trappe, M.J., K. Cromack Jr., J.M. Trappe, D.D.B. Perrakis, E. Cazares-Gonzales, M.A. Castellano, and S.L. Miller. 2009. Interactions among prescribed fire, soil attributes, and mycorrhizal community structure at Crater Lake National Park, Oregon, USA. Fire Ecology 5: 30–50. doi: 10.4996/fireecology.0502030
Article
Google Scholar
Treseder, K.K. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164: 347–355. doi: 10.1111/j.1469-8137.2004.01159.x
Article
Google Scholar
Treseder, K.K., and J.T. Lennon. 2015. Fungal traits that drive ecosystem dynamics on land. Microbiology and Molecular Biology Reviews 79: 243–262. doi: 10.1128/MMBR.00001-15
Article
PubMed
PubMed Central
CAS
Google Scholar
Treseder, K.K., M.C. Mack, and A. Cross. 2004. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecological Applications 14: 1826–1838. doi: 10.1890/03-5133
Article
Google Scholar
Trusty, P.E. 2009. Impact of severe fire on ectomycorrhizal fungi of whitebark pine seedlings. Thesis, Montana State University, Bozeman, USA.
Google Scholar
Tuininga, A.R., and J. Dighton. 2004. Changes in ectomycorrhizal communities and nutrient availability following prescribed burns in two upland pine-oak forests in the New Jersey pine barrens. Canadian Journal of Forest Research 34: 1755–1765. doi: 10.1139/x04-037
Article
Google Scholar
Turner, M.G., and W.H. Romme. 1994. Landscape dynamics in crown fire ecosystems. Landscape Ecology 9: 59–77. doi: 10.1007/BF00135079
Article
Google Scholar
Vásquez-Gassibe, P., J.-A. Oria-de-Rueda, L. Santos-del-Blanco, and P. Martín-Pinto. 2016. The effects of fire severity on ectomycorrhizal colonization and morphometric features in Pinus pinaster Ait. seedlings. Forest Systems 25(1): e050. doi: 10.5424/fs/2016251-07955
Article
Google Scholar
Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36: 1–48. doi: 10.18637/jss.v036.i03
Article
Google Scholar
Vilariño, A., and J. Arines. 1991. Numbers and viability of vesicular-arbuscular fungal propagules in field soil samples after wildfire. Soil Biology and Biochemistry 23: 1083–1087. doi: 10.1016/0038-0717(91)90048-O
Article
Google Scholar
Visser, S. 1995. Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytologist 129: 389–401. doi: 10.1111/j.1469-8137.1995.tb04309.x
Article
Google Scholar
Vogelsang, K.M., H.L. Reynolds, and J.D. Bever. 2006. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist 172: 554–562. doi: 10.1111/j.1469-8137.2006.01854.x
Article
PubMed
Google Scholar
van der Wal, A., T.D. Geydan, T.W. Kuyper, and W. de Boer. 2013. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiology Reviews 37: 477–494. doi: 10.1111/1574-6976.12001
Article
PubMed
CAS
Google Scholar
Whittaker, R.H. 1970. Communities and ecosystems. Macmillan Company, New York, New York, USA.
Google Scholar
Xiang, X., S.M. Gibbons, J. Yang, J. Kong, R. Sun, and H. Chu. 2015. Arbuscular mycorrhizal fungal communities show low resistance and high resilience to wildfire disturbance. Plant and Soil 397: 347–356. doi: 10.1007/s11104-015-2633-z
Article
CAS
Google Scholar
Zak, J.C., and D.T. Wicklow. 1978. Factors influencing patterns of ascomycete sporulation following simulated “burning” of prairie soils. Soil Biology and Biochemistry 10: 533–535. doi: 10.1016/0038-0717(78)90049-4
Article
Google Scholar