Abbas, D., D. Current, M. Ryans, S. Taff, H. Hoganson, and K.N. Brooks. 2011. Harvesting forest biomass for energy - An alternative to conventional fuel treatments: Trials in the Superior National Forest, USA. Biomass and Bioenergy 35 (11): 4557–4564. https://doi.org/10.1016/j.biombioe.2011.06.030.
Article
Google Scholar
Agee, J.K. 1996. The influence of forest structure on fire behavior. In Proceedings of the 17th annual forest vegetation management conference. University of California, Agriculture and Natural Resources, 16-18 January 1996, Redding, California, 52–68.
Google Scholar
Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In 2nd international symposium on information theory. 2-8 September 2-8, 1971 Tsahkadsor, Armenia, USSR, ed. B.N. Petrov and F. Csaki, 267–281.
Google Scholar
Alexander, M.E. 1988. Help with making crown fire hazard assessments. Pages 147-156 in W.C. Fischer and S.F. Arno, compilers. Protecting people and homes from wildfire in the Interior West., October 6-8, 1987, Missoula, Montana, USA. USDA Forest Service General Technical Report GTR-INT-251. Ogden: USDA Forest Service, Intermountain Research Station.
Andersen, H.E., R.J. McGaughey, S.E. Reutebuch, and S.E. 2005. Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment 94 (4): 441–449. https://doi.org/10.1016/j.rse.2004.10.013.
Article
Google Scholar
Anderson, J.R. 1976. A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper 964. Reston: U.S. Geological Survey. https://doi.org/10.3133/pp964.
Book
Google Scholar
Baker, W.L. 1989. Landscape ecology and nature reserve design in the Boundary Waters Canoe Area, Minnesota. Ecology 70 (1): 23–35. https://doi.org/10.2307/1938409.
Article
Google Scholar
Bolstad, P.V., and S.T. Gower. 1990. Estimation of leaf area index in fourteen southern Wisconsin forest stands using a portable radiometer. Tree Physiology 7 (1-2-3-4): 115–124. https://doi.org/10.1093/treephys/7.1-2-3-4.115.
Article
PubMed
Google Scholar
Breiman, L. 2001. Random forests. Machine Learning 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
Article
Google Scholar
Brown, J.K. 1978. Weight and density of crowns of Rocky Mountain conifers. USDA Forest Service Research Paper INT-197. Ogden: USDA Forest Service, Intermountain Forest and Range Experiment Station. https://doi.org/10.5962/bhl.title.68796.
Book
Google Scholar
Bulmer, M.G. 1979. Principles of statistics. Mineola: Dover Publications.
Google Scholar
Cook, R.D. 1979. Influential observations in linear regression. Journal of the American Statistical Association 74 (365): 169–174. https://doi.org/10.1080/01621459.1979.10481634.
Article
Google Scholar
Corace, R.G., L.M. Shartell, L.A. Schulte, W.L. Brininger, M.K. McDowell, and D.M. Kashian. 2012. An ecoregional context for forest management on National Wildlife Refuges of the Upper Midwest, USA. Environmental Management 49 (2): 359–371. https://doi.org/10.1007/s00267-011-9776-3.
Article
PubMed
Google Scholar
Cruz, M.G., M.E. Alexander, and R.H. Wakimoto. 2003. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. International Journal of Wildland Fire 12 (1): 39–50. https://doi.org/10.1071/WF02024.
Article
Google Scholar
Cruz, M.G., M.E. Alexander, and R.H. Wakimoto. 2005. Development and testing of models for predicting crown fire rate of spread in conifer forest stands. Canadian Journal of Forest Research 35 (7): 1626–1639. https://doi.org/10.1139/x05-085.
Article
Google Scholar
Duveneck, M.J., and W.A. Patterson III. 2007. Characterizing canopy fuels to predict fire behavior in pitch pine stands. Northern Journal of Applied Forestry 24 (1): 65–70. https://doi.org/10.1093/njaf/24.1.65.
Article
Google Scholar
Engelstad, P.S., M. Falkowski, P.T. Wolter, A. Poznanovic, and P. Johnson. 2019. Estimating canopy fuel attributes from low-density LiDAR. Fire 2 (3): 38. https://doi.org/10.3390/fire2030038.
Article
Google Scholar
Erdody, T.L., and L.M. Moskal. 2010. Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment 114 (4): 725–737. https://doi.org/10.1016/j.rse.2009.11.002.
Article
Google Scholar
Fassnacht, K.S., S.T. Gower, J.M. Norman, and R.E. McMurtric. 1994. A comparison of optical and direct methods for estimating foliage surface area index in forests. Agricultural and Forest Meteorology 71 (1-2): 183–207. https://doi.org/10.1016/0168-1923(94)90107-4.
Article
Google Scholar
Fernández-Alonso, J.M., L. Alberdi, J.G. Álvarez-González, J.A. Vega, L. Cañellas, and A.D. Ruiz-González. 2013. Canopy fuel characteristics in relation to crown fire potential in pine stands: Analysis, modelling and classification. European Journal of Forest Research 132 (2): 363–377. https://doi.org/10.1007/s10342-012-0680-z.
Article
Google Scholar
Finney, M.A. 1998. FARSITE: Fire area simulator-model development and evaluation. USDA Forest Service RMRS-RP-4. Fort Collins: USDA Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-RP-4.
Book
Google Scholar
Frelich, L.E., and P.B. Reich. 1995. Spatial patterns and succession in a Minnesota southern-boreal forest. Ecological Monographs 65 (3): 325–346. https://doi.org/10.2307/2937063.
Article
Google Scholar
Geladi, P., and B.R. Kowalski. 1986. Partial least-squares regression: A tutorial. Analytica Chimica Acta 185: 1–17. https://doi.org/10.1016/0003-2670(86)80028-9.
Article
CAS
Google Scholar
Gong, G. 1986. Cross-validation, the jackknife, and the bootstrap: Excess error estimation in forward logistic regression. Journal of the American Statistical Association 81 (393): 108–113. https://doi.org/10.1080/01621459.1986.10478245.
Article
Google Scholar
Gower, S.T., and J.M. Norman. 1991. Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology 72 (5): 1896–1900. https://doi.org/10.2307/1940988.
Article
Google Scholar
Gray, K.L., and E.D. Reinhardt. 2003. Analysis of algorithms for predicting canopy fuel. In Proceedings of the Second International Wildland Fire Ecology and Fire Management Congress and Fifth Symposium on Fire and Forest Meteorology. Orlando: American Meteorological Society.
Google Scholar
Heinselman, M.L. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quaternary Research 3 (3): 329–382. https://doi.org/10.1016/0033-5894(73)90003-3.
Article
Google Scholar
Huang, X., B. Ziniti, N. Torbick, and M.J. Ducey. 2018. Assessment of forest above ground biomass estimation using multi-temporal C-band sentinel-1 and polarimetric L-band PALSAR-2 data. Remote Sensing 10 (9): 1424. https://doi.org/10.3390/rs10091424.
Article
Google Scholar
Imhoff, M.L. 1995. A theoretical analysis of the effect of forest structure on synthetic aperture radar backscatter and the remote sensing of biomass. IEEE Transactions on Geoscience and Remote Sensing 33 (2): 341–351. https://doi.org/10.1109/TGRS.1995.8746015.
Article
Google Scholar
Jakubowksi, M.K., Q. Guo, B. Collins, S. Stephens, and M. Kelly. 2013. Predicting surface fuel models and fuel metrics using Lidar and CIR imagery in a dense, mountainous forest. Photogrammetric Engineering & Remote Sensing 79 (1): 37–49. https://doi.org/10.14358/PERS.79.1.37.
Article
Google Scholar
Jamali, A., P. Boguslawski, and C.M. Gold. 2014. Trimble LaserAce 1000 accuracy evaluation for indoor data acquisition. In The XXv FIG International Congress 2014: engaging the challenges, enhancing the relevance. Copenhagen: International Federation of Surveyors, FIG. ISBN 978-87-928532-1-9.
Joshi, N., E.T. Mitchard, M. Brolly, J. Schumacher, A. Fernández-Landa, V.K. Johannsen, and R. Fensholt. 2017. Understanding ‘saturation’ of radar signals over forests. Scientific Reports 7 (1): 3505. https://doi.org/10.1038/s41598-017-03469-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keane, R.E., R.E. Burgan, and J.W. van Wagtendonk. 2001. Mapping wildland fuel for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire 10 (4): 301–319. https://doi.org/10.1071/WF01028.
Article
Google Scholar
Keane, R.E., T. Frescino, M.C. Reeves, and J.L. Long. 2006. Mapping wildland fuel across large regions for the LANDFIRE Prototype Project. In The LANDFIRE Prototype Project: Nationally consistent and locally relevant geospatial data for wildland fire management, technical edited by M.G. Rollins and C.K. Frame, 367–396. USDA Forest Service General Technical Report RMRS-GTR-175. Fort Collins: USDA Forest Service, Rocky Mountain Research Station.
Google Scholar
Keane, R.E., E.D. Reinhardt, J. Scott, K. Gray, and J. Reardon. 2005. Estimating forest canopy bulk density using six indirect methods. Canadian Journal of Forest Research 35 (3): 724–739. https://doi.org/10.1139/x04-213.
Article
Google Scholar
Keane, R.E., K.C. Ryan, T.T. Veblen, C.D. Allen, J. Logan, and B. Hawkes. 2002. The cascading effects of fire exclusion in the Rocky Mountains. In USDA Forest Service General Technical Report RMRS-GTR-91. Fort Collins: USDA Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-91.
Chapter
Google Scholar
Kellndorfer, J., W. Walker, L. Pierce, C. Dobson, J.A. Fites, C. Hunsaker, J. Vona, and M. Clutter. 2004. Vegetation height estimation from shuttle radar topography mission and national elevation datasets. Remote Sensing of Environment 93 (3): 339–358. https://doi.org/10.1016/j.rse.2004.07.017.
Article
Google Scholar
Krasnow, K., T. Schoennagel, and T.T. Veblen. 2009. Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA. Forest Ecology and Management 257 (7): 1603–1612. https://doi.org/10.1016/j.foreco.2009.01.020.
Article
Google Scholar
Kutner, M.H., C.J. Nachtsheim, J. Neter, and W. Li. 2005. Applied linear statistical models. Vol. 5. Boston: McGraw-Hill Irwin.
Google Scholar
LANDFIRE. 2011. LANDFIRE product assessment: eastern milestone super zone analysis and report. Sioux Falls: US Department of the Interior, Geological Survey, EROS Data Center.
Google Scholar
Le Toan, T., A. Beaudoin, J. Riom, and D. Guyon. 1992. Relating forest biomass to SAR data. IEEE Transactions on Geoscience and Remote Sensing 30 (2): 403–411. https://doi.org/10.1109/36.134089.
Article
Google Scholar
Légaré, S., Y. Bergeron, and D. Paré. 2002. Influence of forest composition on understory cover in boreal mixedwood forests of western Quebec. Silva Fennica 36 (1): 353–366. https://doi.org/10.14214/sf.567.
Article
Google Scholar
LI-COR. 2011. LAI-2200 Plant canopy analyzer: instruction manual. Lincoln: LI-COR Inc..
Google Scholar
Lutes, D.C. 2020. FuelCalc 1.7 Users Guide. Missoula: USDA Forest Service, Rocky Mountain Research Station, Fire Modeling Institute.
Google Scholar
Masek, J.G., E.F. Vermote, N.E. Saleous, R. Wolfe, F.G. Hall, K.F. Huemmrich, and T.K. Lim. 2006. A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geoscience and Remote Sensing Letters 3 (1): 68–72. https://doi.org/10.1109/LGRS.2005.857030.
Article
Google Scholar
Messier, C., S. Parent, and Y. Bergeron. 1998. Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests. Journal of Vegetation Science 9 (4): 511–520. https://doi.org/10.2307/3237266.
Article
Google Scholar
MNGAC [Minnesota Geospatial Advisory Council]. 2020. Draft Minnesota State Lidar Plan, Remotely Sensed Data Acquisition Group. https://storymaps.arcgis.com/stories/980394f96f894980a35c6758653bb5ab
Google Scholar
Müller, R., and P. Büttner. 1994. A critical discussion of intraclass correlation coefficients. Statistics in Medicine 13 (23-24): 2465–2476. https://doi.org/10.1002/sim.4780132310.
Article
PubMed
Google Scholar
Norman, J.M., and J.M. Welles. 1983. Radiative transfer in an array of canopies 1. Agronomy Journal 75 (3): 481–488. https://doi.org/10.2134/agronj1983.00021962007500030016x.
Article
Google Scholar
Paletto, A., and V. Tosi. 2009. Forest canopy cover and canopy closure: Comparison of assessment techniques. European Journal of Forest Research 128 (3): 265–272. https://doi.org/10.1007/s10342-009-0262-x.
Article
Google Scholar
Perala, D.A., and D.H. Alban. 1994. Allometric biomass estimators for aspen-dominated ecosystems in the upper Great Lakes. USDA Forest Service Research Paper NC-314. St. Paul: USDA Forest Service, North Central Forest Experiment Station. https://doi.org/10.2737/NC-RP-314.
Book
Google Scholar
Perry, S.G., A.B. Fraser, D.W. Thomson, and J.M. Norman. 1988. Indirect sensing of plant canopy structure with simple radiation measurements. Agricultural and Forest Meteorology 42 (2-3): 255–278. https://doi.org/10.1016/0168-1923(88)90082-2.
Article
Google Scholar
Pulliainen, J.T., L. Kurvonen, and M.T. Hallikainen. 1999. Multitemporal behavior of L- and C-band SAR observations of boreal forests. IEEE Transactions on Geoscience and Remote Sensing 37 (2): 927–937. https://doi.org/10.1109/36.752211.
Article
Google Scholar
Rauste, Y. 2005. Multi-temporal JERS SAR data in boreal forest biomass mapping. Remote Sensing of Environment 97 (2): 263–275. https://doi.org/10.1016/j.rse.2005.05.002.
Article
Google Scholar
Reeves, M.C., K.C. Ryan, M.G. Rollins, and T.G. Thompson. 2009. Spatial fuel data products of the LANDFIRE project. International Journal of Wildland Fire 18 (3): 250–267. https://doi.org/10.1071/WF08086.
Article
Google Scholar
Reinhardt, E., D. Lutes, and J. Scott. 2006. FuelCalc: A method for estimating fuel characteristics. 2006. In Fuels management-how to measure success: Conference proceedings, compiled by P.L. Andrews, and B.W. Butler, 273–282. USDA Forest Service Proceedings RMRS-P-41. Fort Collins: USDA Forest Service, Rocky Mountain Research Station.
Google Scholar
Rich, R.L., L.E. Frelich, and P.B. Reich. 2007. Wind-throw mortality in the southern boreal forest: Effects of species, diameter and stand age. Journal of Ecology 95 (6): 1261–1273. https://doi.org/10.1111/j.1365-2745.2007.01301.x.
Article
Google Scholar
Rollins, M.G. 2009. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. International Journal Wildland Fire 18 (3): 235–249. https://doi.org/10.1071/WF08088.
Article
Google Scholar
Rothermel, R.C. 1991. Predicting behavior and size of crown fires in the Northern Rocky Mountains. In USDA Forest Service Research Paper RP-438. Ogden: USDA Forest Service Intermountain Forest and Range Experiment Station. https://doi.org/10.2737/INT-RP-438.
Chapter
Google Scholar
Rouse, J.W., R.H. Haas, J.A. Schell, and D.W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the 3rd ERTS Symposium. Pages 309-317 in NASA Goddard Space Flight Center 3d ERTS-1 Symposium, Volume 1, Section A. Washington D.C.: U.S. Government Printing Office.
Google Scholar
Saatchi, S., K. Halligan, D.G. Despain, and R.L. Crabtree. 2007. Estimation of forest fuel load from radar remote sensing. IEEE Transactions on Geoscience and Remote Sensing 45 (6): 1726–1740. https://doi.org/10.1109/TGRS.2006.887002.
Article
Google Scholar
Sadeghi, Y., B. St-Onge, B. Leblon, J.F. Prieur, and M. Simard. 2018. Mapping boreal forest biomass from a SRTM and TanDEM-X based on canopy height model and Landsat spectral indices. International Journal of Applied Earth Observation and Geoinformation 68: 202–213. https://doi.org/10.1016/j.jag.2017.12.004.
Article
Google Scholar
Sader, S.A. 1987. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture radar data. Photogrammetric Engineering & Remote Sensing 53 (2): 193–202.
Google Scholar
Sayn-Wittgenstein, L. 1961. Phenological aids to tree species identification on air photographs. Technical Note No. 104. Ottawa: Forest Research Branch, Canada Department of Forestry.
Google Scholar
Schlund, M., D. Baron, P. Magdon, and S. Erasmi. 2019. Canopy penetration depth estimation with TanDEM-X and its compensation in temperate forests. ISPRS Journal of Photogrammetry and Remote Sensing 147: 232–241. https://doi.org/10.1016/j.isprsjprs.2018.11.021.
Article
Google Scholar
Schwartz, G. 1978. Estimating the dimension of a model. The Annals of Statistics 6 (2): 461–464. https://doi.org/10.1214/aos/1176344136.
Article
Google Scholar
Scott, J. 2008. Review and assessment of LANDFIRE canopy fuel mapping procedures. Landfire Bulletin. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 22 p. Available from https://landfire.cr.usgs.gov/documents/LANDFIRE_Canopyfuels_and_Seamlines_ReviewScott.pdf.
Scott, J.H. 1999. NEXUS: A system for assessing crown fire hazard. Fire Management Notes 59: 21–24.
Google Scholar
Scott, J.H., and E.D. Reinhardt. 2005. Stereo photo guide for estimating canopy fuel characteristics in conifer stands. USDA Forest Service General Technical Report RMRS-GTR-145. Fort Collins: USDA Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-145.
Book
Google Scholar
Sexton, J.O., T. Bax, T.P. Siqueira, J.J. Swenson, and S. Hensley. 2009. A comparison of lidar, radar, and field measurements of canopy height in pine and hardwood forests of southeastern North America. Forest Ecology and Management 257 (3): 1136–1147. https://doi.org/10.1016/j.foreco.2008.11.022.
Article
Google Scholar
Singh, A., A.R. Jakubowski, I. Chidister, and P.A. Townsend. 2013. A MODIS approach to predicting stream water quality in Wisconsin. Remote Sensing of Environment 128: 74–86. https://doi.org/10.1016/j.rse.2012.10.001.
Article
Google Scholar
Song, C., C.E. Woodcock, K.C. Seto, M.P. Lenney, and S.A. Macomber. 2001. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote sensing of Environment 75 (2): 230–244. https://doi.org/10.1016/S0034-4257(00)00169-3.
Article
Google Scholar
Stenberg, P., S. Linder, H. Smolander, and J. Flower-Ellis. 1994. Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands. Tree Physiology 14 (7-8-9): 981–995. https://doi.org/10.1093/treephys/14.7-8-9.981.
Article
PubMed
Google Scholar
Thapa, B., P.T. Wolter, B.R. Sturtevant, and P.A. Townsend. 2020. Reconstructing past forest composition and abundance by using archived Landsat and national forest inventory data. International Journal of Remote Sensing 41 (10): 4022–4056. https://doi.org/10.1080/01431161.2019.1711245.
Article
Google Scholar
Tukey, J. 1953. Multiple comparisons. Journal of the American Statistical Association 48 (264): 624–625.
Google Scholar
USDI National Park Service. 2003. Fire monitoring handbook. Boise: Fire Management Program Center, National Interagency Fire Center.
Google Scholar
Ustin, S.L. 2004. Remote sensing instruments: Past and present. In Manual of remote sensing, remote sensing for natural resource management and environmental monitoring (volume 4). Hoboken: Wiley.
Google Scholar
Van Hooser, D.D. 1983. Whole tree volume estimates for the Rocky Mountain States (Vol. 29). USDA Forest Service Resource bulletin INT-29. Ogden: USDA Intermountain Forest and Range Experiment Station.
Google Scholar
Van Wagner, C.E. 1977. Conditions for the start and spread of crownfire. Canadian Journal of Forest Research 7 (1): 23–24. https://doi.org/10.1139/x77-004.
Article
Google Scholar
Vermote, E.F., N. El Saleous, C.O. Justice, Y.J. Kaufman, J.L. Privette, L. Remer, and D. Tanre. 1997. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. Journal of Geophysical Research: Atmospheres 102 (D14): 17131–17141. https://doi.org/10.1029/97JD00201.
Article
Google Scholar
Vogelmann, J.E., and B.N. Rock. 1988. Assessing forest damage in high-elevation coniferous forests in Vermont and New Hampshire using Thematic Mapper data. Remote Sensing of Environment 24 (2): 227–246. https://doi.org/10.1016/0034-4257(88)90027-2.
Article
Google Scholar
Wang, Y., F.W. Davis, and J.M. Melack. 1993. Simulated and observed backscatter at P-, L-, and C-bands from ponderosa pine stands. IEEE Transactions on Geoscience and Remote Sensing 31 (4): 871–879. https://doi.org/10.1109/36.239910.
Article
Google Scholar
Wang, Y., F.W. Davis, J.M. Melack, E.S. Kasischke, and N.L. Christensen Jr. 1995. The effects of changes in forest biomass on radar backscatter from tree canopies. Remote Sensing 16 (3): 503–513. https://doi.org/10.1080/01431169508954415.
Article
Google Scholar
Westfall, P.H. 2014. Kurtosis as peakedness, 1905-2014. RIP. The American Statistician 68 (3): 191–195. https://doi.org/10.1080/00031305.2014.917055.
Article
PubMed
PubMed Central
Google Scholar
White, J.D., S.W. Running, R. Nemani, R.E. Keane, and K.C. Ryan. 1997. Measurement and remote sensing of LAI in Rocky Mountain montane ecosystems. Canadian Journal of Forest Research 27 (11): 1714–1727. https://doi.org/10.1139/x97-142.
Article
Google Scholar
Wolter, P.T., E.A. Berkley, S.D. Peckham, A. Singh, and P.A. Townsend. 2012. Exploiting tree shadows on snow for estimating forest basal area using Landsat data. Remote Sensing of Environment 121: 69–79. https://doi.org/10.1016/j.rse.2012.01.008.
Article
Google Scholar
Wolter, P.T., D.J. Mladenoff, G.E. Host, and T.R. Crow. 1995. Improved forest classification in the northern Lake State using multi-temporal Landsat imagery. Photogrammetric Engineering & Remote Sensing 61 (9): 1129–1143.
Google Scholar
Wolter, P.T., and P.A. Townsend. 2011. Multi-sensor data fusion for estimating forest species composition and abundance in northern Minnesota. Remote Sensing of Environment 115 (2): 671–691. https://doi.org/10.1016/j.rse.2010.10.010.
Article
Google Scholar
Wolter, P.T., P.A. Townsend, and B.R. Sturtevant. 2009. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data. Remote Sensing of Environment 113 (9): 2019–2036. https://doi.org/10.1016/j.rse.2009.05.009.
Article
Google Scholar
Wolter, P.T., P.A. Townsend, B.R. Sturtevant, and C.C. Kingdon. 2008. Remote sensing of the distribution and abundance of host species for spruce budworm in Northern Minnesota and Ontario. Remote Sensing of Environment 112 (10): 3971–3982. https://doi.org/10.1016/j.rse.2008.07.005.
Article
Google Scholar
Wolter, P.T., and M.A. White. 2002. Recent forest cover type transitions and landscape structural changes in northeast Minnesota, USA. Landscape Ecology 17 (2): 133–155. https://doi.org/10.1023/A:1016522509857.
Article
Google Scholar
Zavitkovski, J. 1976. Ground vegetation biomass, production, and efficiency of energy utilization in some northern Wisconsin forest ecosystems. Ecology 57 (4): 694–706. https://doi.org/10.2307/1936183.
Article
Google Scholar